Answer:
The answer is the top choice. (-1)
Explanation:
We are dealing with a negative number here, so we should start at negative five on the number line. From here we see that we are subtracting a negative number from it, which means we are really adding. (Review your rules for negative signs if this doesn't make sense.) So we add 4 to -5, and we get -1. Thus, we get the top choice.
Answer:
Range, 
Explanation:
The question deals with the projectile motion of a particle mass M with charge Q, having an initial speed V in a direction opposite to that of a uniform electric field.
Since we are dealing with projectile motion in an electric field, the unknown variable here, would be the range, R of the projectile. We note that the electric field opposes the motion of the particle thereby reducing its kinetic energy. The particle stops when it loses all its kinetic energy due to the work done on it in opposing its motion by the electric field. From work-kinetic energy principles, work done on charge by electric field = loss in kinetic energy of mass.
So, [tex]QER = MV²/2{/tex} where R is the distance (range) the mass moves before it stops
Therefore {tex}R = MV²/2QE{/tex}
Answer:
the tension in each side of the cable is 3677.57 N
Explanation:
given data
traffic light = 20 kg
cable between two poles = 30 m
sag in the cable = 0.40 m
solution
by the free body diagram
tan θ =
.............1
θ = 1.527 °
and
tension = mg
The net force is along x - axis is express as
T2 cosθ = T1 cosθ .................2
so T2 - T1 ..............3
and
when we take it along y axis that is express as
( T1 + T2) sinθ = mg ...................4
so by equation 3 we put here
2 × T1 sin(1.527) = 20 × 9.8
T1 = 3677.57 N
The answer you are looking for is 400 joules.