Temperature and rate of evaporation are proportional to each other. Surface area: As the surface area increases, the rate of evaporation increases. The surface area and rate of evaporation are proportional to each other. Humidity: The rate of evaporation decreases with an increase in humidity.
Intial velocity u=3m/s
final velocity v
2
=u
2
+2as=3
2
+(2×2×5)=29 ⟹v=5.3m/s
KE=
2
1
m(v
2
−u
2
)=
2
1
×2×((5.3)
2
−3
2
)=20J
Answer:
n= 16021.03 slaps
Explanation:
Using law of Energy conservation
E_{thermal}= Kinetic energy of hand
⇒
m_h= mass of the hand = 0.4 kg
v_h= velocity of the hand = 10 m/s
n= number of slaps
c= 4180 J/Kg °C
m= mass of chicken = 1 kg
Assuming all the energy of hand goes into chicken
Given Ti=0°C and T_f= 170 F= 76.66°C
Now putting the values in above equation to get n

n= 16021.03 slaps
Answer:L=109.16 m
Explanation:
Given
initial temperature 
Final Temperature 
mass flow rate of cold fluid 
Initial Geothermal water temperature 
Let final Temperature be T
mass flow rate of geothermal water 
diameter of inner wall 

specific heat of water 
balancing energy
Heat lost by hot fluid=heat gained by cold Fluid




As heat exchanger is counter flow therefore





heat lost or gain by Fluid is equal to heat transfer in the heat exchanger
(LMTD)




Answer: The correct answer is option (C).
Explanation:
As it is given in the problem, the path of a meteor passing Earth is affected by its gravitational force and falls to Earth's surface. Another meteor of the same mass falls to Jupiter's surface due to its gravitational force.
According to Newton's law of universal gravitational, every particle attracts every other particles in the universe with the gravitational force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
The Jupiter is the most massive planet in the solar system. It is also the largest planet in the solar system. The gravity of Jupiter on its surface is 2.4 times that of surface gravity of the Earth.
If a person weighs 100 pounds on the Earth then he would weigh 240 pounds on Jupiter.
Therefore, the correct answer is option (C), the meteor falls to Jupiter faster due to its greater gravitational force.