1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
3 years ago
15

Can anybody solve this? Will give out 20 POINTS if you are SMART!

Mathematics
2 answers:
algol133 years ago
6 0

Answer:

11x^2- 16x- 4

Step-by-step explanation:

ehidna [41]3 years ago
5 0

Answer:

⬇️

⬇️

⬇️

⬇️

⬇️

⬇️

⬇️

You might be interested in
Solve: 5/2x - 1/3= -1/2<br><br>A. x=-5/12<br>B. x= -25/12<br>C. x= -1/15<br>D. x= 1/3​
devlian [24]

Answer:

c. x = -1/15

Step-by-step explanation:

5/2x - 1/3 = -1/2 [multiply the whole equation by 6 (lowest common denom)

15x - 2 = -3 [add 2 on both sides of equation

15x = -1 [divide both sides by 15 to isolate x]

x = -1/15

7 0
3 years ago
Read 2 more answers
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Write a real-world poblem that can be represented by d-32=64.
tankabanditka [31]

Answer:

d-32=64 ----> d=96

Step-by-step explanation:

John had d amount of chocolate bars to sell for a school fundraiser. He sold 32 of them and was left with 64.

6 0
3 years ago
Simplify:<br> 5 1/12 - 2 3/4 =<br> Express your answer as a mixed number.
disa [49]

Answer:

Mixed Number Form: 2 1/3

Step-by-step explanation:

7 0
2 years ago
Round 6.5472 to<br> the hundredths place.
Ugo [173]

Answer:

6.5500

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Given a circle with measures of (C, d, and r) and a circle with measures of (C', d', and r'), what is C if
    13·1 answer
  • Determine the rate of change fr -2y- 16x=41
    12·1 answer
  • ∆ABC with Prove: Statement Reason 1. given 2. ∠CAB ≅ ∠EDB ∠ACB ≅ ∠DEB If two parallel lines are cut by a transversal, the corres
    10·1 answer
  • What is the IQR (Inter Quartile Range) for the data set? 11 6 19 14 21 7 13 15 15 Question 10 options: 8 9 15 17
    7·1 answer
  • Use the frequency table to determine how many students received a score of 70 or better on an English exam.
    5·1 answer
  • Factor the algebraic expression below in terms of a single trigonometric function. csc 2x - 1
    15·1 answer
  • (90 points) I need some help on how to write this graph as an equation. Here's the instructions I was given.
    7·1 answer
  • Help please, thank you
    9·2 answers
  • Matt makes the same amount of money each week working at his parents' store. The graph shows the amount of money Matt has spent
    15·1 answer
  • You roll a number cube one time. What is the probability that you roll a 1 or 3? Enter your answer as a
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!