Answer:
Roman numbers are oxidation state of the metals
Because some elements of metals show more than one oxidation state like iron Fe2+ in ferrous and Fe3+ in ferric.
Explanation:
Answer:
—96.03°C
Explanation:
We'll begin by writing out the information provided by the question. This includes:
Number of mole (n) = 0.645 mole
Volume (V) = 2.00 L
Pressure (P) = 4.68 atm
Temperature (T) =?
Recall: that the gas constant = 0.082atm.L/Kmol
With the ideal gas equation PV = nRT, the temperature of the gas can be obtained as follow:
PV = nRT
4.68 x 2 = 0.645 x 0.082 x T
Divide both side 0.645 x 0.082
T = (4.68 x 2) /(0.645 x 0.082)
T = 176.97 K
Now, We can also express the temperature obtained in celsius as shown below:
Temperature (celsius) = temperature (Kelvin) - 273
Temperature (celsius) = 176.97 - 273
Temperature (celsius) = —96.03°C
The temperature of the Neon gas is
—96.03°C
Answer:
Kc = 0.20
Explanation:
N₂O₄ ⇄ 2NO₂
moles 5.3mol 2.3mol
Vol 5L 5L
Molarity 5.3/5M 2.3/5M
= 1.06M = 0.46M
Kc = [NO₂]²/[N₂O₄] = (0.46)²/(1.06) = 0.1996 ≅ 0.20
If the results of the experiment on repeating are not same, it shows the results are not standard, there are some factors, which are not constant
Low electron affinity and large atomic radius
Metallic character decreases across a period (from left to right) and increases down a group.
Electron affinity increases from left to right within a period. This is caused by the decrease in atomic radius. Electron affinity decreases from top to bottom within a group. This is caused by the increase in atomic radius.