Here's the equation:
<span>Fe2 O3 + 2Al → 2Fe + Al2 O3
</span>
Here's the question.
What mass of Al will react with 150g of Fe2 O3?
<span>In every 2 moles Al you need 1 mole Fe2O3 </span>
<span>moles = mass / molar mass </span>
<span>moles Fe2O3 = 150 g / 159.69 g/mol </span>
<span>= 0.9393 moles </span>
<span>moles Al needed = 2 x moles Fe2O3 </span>
<span>= 2 x 0.9393 mol </span>
<span>= 1.879 moles Al needed </span>
<span>mass = molar mass x moles </span>
<span>mass Al = 26.98 g/mol x 1.879 mol </span>
<span>= 50.69 g </span>
<span>= 51 g (2 sig figs)
</span>
So the <span>mass of Al that will react with 150g of Fe2 O3 is 51 grams.</span>
Answer:
2.4 mole of oxygen will react with 2.4 moles of hydrogen
Explanation:
As we know
1 liter = 1000 grams
2H2 + O2 --> 2H2O
Weight of H2 molecule = 2.016 g/mol
Weight of water = 18.01 gram /l
2 mole of oxygen react with 2 mole of H2
2.4 mole of oxygen will react with 2.4 moles of hydrogen
Answer:
The resulting solution contains approximately 666 g of water.
Explanation:
In the initial solution we have:
1g salt : 8g sugar : 200g water
This means that the ratios are:
In the final solution we have:
5g salt: xg sugar: yg water
The new ratios are:
Now we can calculate the amount of sugar in the final solution:
Finally, we calculate the amount of water:
You have to find the stoichiometric ratio between AlCl₃ and BaCl₂. The common element between them is Cl. So, the ratio of Cl in BaCl₂ to AlCl₃ is 2/3. The molar mass of AlCl₃ is 133.34 g/mol. The solution is as follows:
Mass of AlCl₃ = (6 mol BaCl₂)(2 mol Cl/1 mol BaCl₂)(1 mol AlCl₃/3 mol Cl)(133.34 g/mol) = 533.36 g AlCl₃