Since valence shells in nonmetal atoms are almost full, the atoms attract electrons and hold them tightly to fill their valence shells.
Answer:
The volume of the solution is 0.305 liters.
Explanation:
Molar mass is the amount of mass that a substance contains in one mole. The molar mass of K₂Cr₂O₇ is 294 g / mole. Then you can apply the following rule of three: if by definition of molar mass 294 grams of the compound are contained in 1 mole, 180 grams are contained in how many moles?

moles= 0.61
Molarity is a measure of the concentration of a substance that is defined as the number of moles contained in a certain volume. So, the molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:

Molarity is expressed in units
.
In this case:
- molarity= 2 M
- number of moles of solute= 0.61 moles
- volume= ?
Replacing in the definition of molarity:

Solving:

volume= 0.305 liters
<u><em>The volume of the solution is 0.305 liters.</em></u>
Answer:
b. The number of electrons
Explanation:
A "neutral atom" has a <u>neutral charge</u>. This means that <em>its charge is equal to </em><em>zero. </em>In order for the charges to cancel out each other, the atom's <em>positive charge should be equal to the negative charge. </em>These being said, the number of electrons<em> (negatively-charged)</em> is then equal to the number of protons <em>(positively-charged). </em>Those atoms which are not neutral are called <em>"ions."</em> This means that they either have more or less electrons than the protons.
Answer:
1. NaN₃(s) → Na(s) + 1.5 N₂(g)
2. 79.3g
Explanation:
<em>1. Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN₃) into solid sodium and gaseous dinitrogen.</em>
NaN₃(s) → Na(s) + 1.5 N₂(g)
<em>2. Suppose 43.0L of dinitrogen gas are produced by this reaction, at a temperature of 13.0°C and pressure of exactly 1atm. Calculate the mass of sodium azide that must have reacted. Round your answer to 3 significant digits.</em>
First, we have to calculate the moles of N₂ from the ideal gas equation.

The moles of NaN₃ are:

The molar mass of NaN₃ is 65.01 g/mol. The mass of NaN₃ is:

Answer:
The highlighted words in the explanation.
Explanation:
A clue comes by considering the noble gas elements, the rightmost column of the periodic table. These elements—helium, neon, argon, krypton, xenon, and radon—do not form compounds very easily, which suggests that they are especially stable as lone atoms. What else do the noble gas elements have in common?