Answer:
True. mark me as Brilliant
Answer:
Magic school bus on ya left! so basically a star is born when like....atoms are like squeezed with enough pressure and kinda squished together, once tht happens the atoms start to fuse together
Explanation:
Im pretty sure it’s a because it makes more sense you know?.
This question is incomplete, the complete question is;
A particle is directed along the axis of the instrument in the figure below. A parallel plate capacitor sets up an electric field E, which is oriented perpendicular to a uniform magnetic field B. If the plates are separated by d = 2.0 mm and the value of the magnetic field is B = 0.60T.
Calculate the potential difference, between the capacitor plates, required to allow a particle with speed v = 5.0 × 10⁵ m/s to pass straight through without deflection.
<em>Hint </em>: ΔV = Ed <em>
</em>
Answer:
the required potential difference, between the capacitor plates is 600 V
Explanation:
Given the data in the question;
B = 0.60 T
d = 2.0 mm = 0.002 m
v = 5.0 × 10⁵ m/s.
since particle pass straight through without deflection.
F
= 0
so, F
= F
qE = qvB
divide both sides by q
E = vB
we substitute
E = (5.0 × 10⁵) × 0.6
E = 300000 N/C
given that; potential difference ΔV = Ed
we substitute
ΔV = 300000 × 0.002
ΔV = 600 V
Therefore, the required potential difference, between the capacitor plates is 600 V
In order to compute the final velocity of the trains, we may apply the principle of conservation of momentum which is:
initial momentum = final momentum
m₁v₁ = m₂v₂
The final mass of the trains will be:
10,000 + 10,000 = 20,000 kg
Substituting the values into the equation:
10,000 * 3 = 20,000 * v
v = 1.5 m/s
The final velocity of the trains will be 1.5 m/s