Vapor pressure<span> or equilibrium </span>vapor pressure<span> is defined as the </span>pressure<span> exerted by a </span>vapor<span> in thermodynamic equilibrium with its condensed phases at a certain temperature. It is independent with atmospheric pressure since it does not change by changing the atmospheric pressure only. </span>
Answer:
quantity A is mass and quantity B is wright
Answer:
Yes convection will always work faster and more efficiently.
Explanation:
When a gas or a liquid is heated, hot areas of the material flow and mix with the cool areas. ... Convection transfers heat over a distance faster than conduction. But ultimately conduction must transfer the heat from the gas to the other object, though molecular contact.
Conduction. Because they are connected as they tranfer energy
Answer:
7.67001846 km/s or 17157.38529 mph
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of the Earth = 5.972 × 10²⁴ kg
m = Mass of satellite
v = Velocity of satellite
The distance between the Earth's center and the satellite is
r = 6371000+400000 = 6771000 m
As the centripetal force balances the force of gravity we have

Converting to mph

The velocity of the satellite is 7.67001846 km/s or 17157.38529 mph