Step-by-step explanation:
Hey there!!!
Here,
Given, A line passes through point (2,-2) and is perpendicular to the y= 5x+2.
The equation of a straight line passing through point is,

Now, put all values.

It is the 1st equation.
Another equation is;
y = 5x +2........(2nd equation).
Now, Comparing it with y = mx + c, we get;
m2=5
As per the condition of perpendicular lines,
m1×m2= -1
m1 × 5 = -1
Therefore, m2= -1/5.
Keeping the value of m1 in 1st equation.

Simplify them.



Therefore the required equation is x+5y+8= 0.
<em><u>Hope it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
We know that the total number of students is 180, so 180 is the 100 precent of the students, now we can set up a proportion and solve
180/100=135/x
x=135 times 100 over 180
x=75%
100÷11=9.09090909
converting it it will be 9.1 miles per hour
Check the picture below. So the parabola looks more or less like so.
let's recall that the vertex is half-way between the focus point and the directrix, at "p" units away from both.
Let's notice that the focus point is below the directrix, that means the parabola is vertical, namely the squared variable is the "x", and it also means that it's opening downwards as you see in the picture, namely that "p" is negative, in this case "p" is 1 unit, and thus is -1.
![\bf \textit{parabola vertex form with focus point distance} \\\\ \begin{array}{llll} 4p(x- h)=(y- k)^2 \\\\ \stackrel{\textit{we'll use this one}}{4p(y- k)=(x- h)^2} \end{array} \qquad \begin{array}{llll} vertex\ ( h, k)\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=-2\\ k=5\\ p=-1 \end{cases}\implies 4(-1)(y-5)=[x-(-2)]^2\implies -4(y-5)=(x+2)^2 \\\\\\ y-5=-\cfrac{1}{4}(x+2)^2\implies y=-\cfrac{1}{4}(x+2)^2+5](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bwe%27ll%20use%20this%20one%7D%7D%7B4p%28y-%20k%29%3D%28x-%20h%29%5E2%7D%20%5Cend%7Barray%7D%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20vertex%5C%20%28%20h%2C%20k%29%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D-2%5C%5C%20k%3D5%5C%5C%20p%3D-1%20%5Cend%7Bcases%7D%5Cimplies%204%28-1%29%28y-5%29%3D%5Bx-%28-2%29%5D%5E2%5Cimplies%20-4%28y-5%29%3D%28x%2B2%29%5E2%20%5C%5C%5C%5C%5C%5C%20y-5%3D-%5Ccfrac%7B1%7D%7B4%7D%28x%2B2%29%5E2%5Cimplies%20y%3D-%5Ccfrac%7B1%7D%7B4%7D%28x%2B2%29%5E2%2B5)
Is this chemistry, their are many apps online that do you it automatically for u