Answer:
motion
Explanation:
i had an assignment on it!
Answer:
4.163 m
Explanation:
Since the length of the bridge is
L = 380 m
And the bridge consists of 2 spans, the initial length of each span is

Due to the increase in temperature, the length of each span increases according to:

where
is the initial length of one span
is the temperature coefficient of thermal expansion
is the increase in temperature
Substituting,

By using Pythagorean's theorem, we can find by how much the height of each span rises due to this thermal expansion (in fact, the new length corresponds to the hypothenuse of a right triangle, in which the base is the original length of the spand, and the rise in heigth is the other side); so we find:

Answer:
R = 2Ω
Explanation:
Potential difference (V) = current (I) * Resistance (R)
V = IR
I = 2.0A
V = 10v
R = ?
V = IR
R = V / I
R = 10 / 2
R = 2Ω
The resistance across the wire is 2Ω
Answer:
a) a = 4.9 m / s², N = 16.97 N and b) F = 9.8 N
Explanation:
a) For this exercise we will use Newton's second law, we write a reference system with the x axis parallel to the plane, see attached, in this system the only force we have to break down is weight, let's use trigonometry
sin 30 = Wx / W
cos 30 = Wy / W
Wx = W sin30
Wy = W cos 30
Let's write the equations on each axis
X axis
Wx = ma
Y Axis
N- Wy = 0
N = Wy = mg cos 30
N = 2.0 9.8 cos 30
N = 16.97 N
We calculate the acceleration
a = Wx / m
a = mg sin 30 / m
a = g sin 30
a =9.8 sin 30
a = 4.9 m / s²
b) For the block to move with constant speed, the acceleration must be zero, so the force applied must be equal to the weight component
F -Wx = 0
F = Wx
F = m g sin 30
F = 2.0 9.8 sin 30
F = 9.8 N