1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marin [14]
2 years ago
5

How many examples are there for oscillatory motion (i) Motion of football players (ii) String of a guitar (iii) Motion of a chil

d on a swing (iv) Rotating fan (f) Surface of drums (vi) Moving of bicycles on road (vii) Rolling of a ball on ground
is Apurva account ban ??​
Physics
1 answer:
andrew11 [14]2 years ago
7 0

Answer:

yesssssss mere followers mein dekho Mrs Queen I'd hai uska follow her ☺

I'm a baby so I don't know the answer

You might be interested in
DON'T ANSWER IF YOU DON'T KNOW
Darina [25.2K]

Answer:

the answer is Natural selection

3 0
2 years ago
Read 2 more answers
During a medieval siege of a castle, the attacking army uses a trebuchet to heavy stones at the castle the trebuchet launches th
vlada-n [284]

Answer:

Explanation:

The question relates to time of flight of a projectile .

Time of flight = 2 u sinθ / g

u is speed of projectile , θ is angle of projectile

= 2 x 48.5 sin42 / 9.8

= 6.6 seconds  .

Maximum height attained

= u² sin²θ / g

= 48.5² sin²42 / 9.8

= 107.47 m .

7 0
2 years ago
Which of the following circuits can be used to measure the resistance of the heating element, shown as a resistor in the diagram
Wewaii [24]

In order to measure the resistance in the circuit, we need to know the voltage V and the current I in the circuit, this way we can calculate the resistance using the formula:

R=\frac{V}{I}

In order to calculate the current, we can use an amperemeter that must be in series with the circuit, this way it will not affect the circuit.

And in order to calculate the voltage, we can use a voltmeter that must be in parallel with the resistance, this way it will not affect the circuit.

The correct option that shows an amperemeter in series and a voltmeter in parallel is the fourth option.

8 0
1 year ago
A skier is pulled by a towrope up a frictionless ski slope that makes an angle of 12 degrees with the horizontal. The rope moves
MArishka [77]

Answer:

Explanation:

Given,

  • Work done by the rope 900 m/s.
  • Angle of inclination of the slope = \theta\ =\ 12^o
  • Initial speed of the skier = v = 1.0 m/s
  • Length of the inclined surface = d = 8.0 m

part (a)

The rope is doing the work against the gravity on the skier to uplift up to the inclined surface. Therefore the work done by the rope is equal to the work done on the skier due to the gravity

\therefore W_r\ =\ W_g\ =\ 900\ J

In both cases the height attained by the skier is equal. and the work done by gravity does not depend upon the speed of the skier.

part (b)

  • Initial speed of the skier = v = 1.0 m/s.

Rate of the work done by the rope is power of the rope.

Power\ =\ \dfrac{\Delta W}{\Delta t}\\\Rightarrow P\ =\ \dfrac{\Delta W}{\dfrac{d}{v}}\\\Rightarrow P\ =\ \dfrac{\Delta W\times v}{d}\\\Rightarrow P\ =\ \dfrac{900\times 1.0}{8.0}\\\Rightarrow P\ =\ 112.5\ Watt

Part (c)

  • Initial speed of the skier = v = 2.0 m/s.

Rate of the work done by the rope is power of the rope.

Power\ =\ \dfrac{\Delta W}{\Delta t}\\\Rightarrow P\ =\ \dfrac{\Delta W}{\dfrac{d}{v}}\\\Rightarrow P\ =\ \dfrac{\Delta W\times v}{d}\\\Rightarrow P\ =\ \dfrac{900\times 2.0}{8.0}\\\Rightarrow P\ =\ 225\ Watt

4 0
3 years ago
Two astronauts (each with mass 100 kg) are drifting together through space. They are connected to each other by a rope 5 m in le
Nana76 [90]

Answer:

1000 kgm²/s, 400 J

1000 kgm²/s, 1000 J

600 J

Explanation:

m = Mass of astronauts = 100 kg

d = Diameter

r = Radius = \frac{d}{2}

v = Velocity of astronauts = 2 m/s

Angular momentum of the system is given by

L=mvr+mvr\\\Rightarrow L=2mvr\\\Rightarrow L=2\times 100\times 2\times 2.5\\\Rightarrow L=1000\ kgm^2/s

The angular momentum of the system is 1000 kgm²/s

Rotational energy is given by

K=I\omega^2\\\Rightarrow K=\frac{1}{2}(mr^2)\left(\frac{v}{r}\right)^2\\\Rightarrow K=mv^2\\\Rightarrow K=100\times 2^2\\\Rightarrow K=400\ J

The rotational energy of the system is 400 J

There no external toque present so the initial and final angular momentum will be equal to the initial angular momentum 1000 kgm²/s

L_i=L_f\\\Rightarrow 2mv_ir_i=2mv_fr_f\\\Rightarrow v_f=\frac{v_ir_i}{r_f}\\\Rightarrow v_f=\frac{2\times 2.5}{0.5}\\\Rightarrow v_f=10\ m/s

Energy

E_2=mv_f^2\\\Rightarrow E_2=100\times 10\\\Rightarrow E_2=1000\ J

The new energy will be 1000 J

Work done will be the change in the kinetic energy

W=E_2-E\\\Rightarrow W=1000-400\\\Rightarrow W=600\ J

The work done is 600 J

5 0
3 years ago
Other questions:
  • A flask contains equal masses of f2 and cl2 with a total pressure of 2.00 atm at 298k. What is the partial pressure of cl2 in th
    11·1 answer
  • A carton is given a push across a horizontal, frictionless surface. The carton has a mass m, the push gives it an initial speed
    13·1 answer
  • The main reason for making the cover of a vacuum
    15·1 answer
  • A bullet of mass 11.1 g is fired into an initially stationary block and comes to rest in the block. The block, of mass 1.01 kg,
    5·1 answer
  • Suppose you take a short piece of wire that is not attached to anything and move it up and down in a magnetic field. Explain whe
    14·2 answers
  • On a cello, the string with the largest linear density (1.44 x 10-2 kg/m) is the C string. This string produces a fundamental fr
    9·1 answer
  • Date:
    8·1 answer
  • The standard metric unit of volume is the _____.
    14·1 answer
  • How can you show that an enclosed liquid exerts pressure in all directions equally?<br>​
    11·1 answer
  • Please help me solve this! :)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!