<em>Answer:</em>
<em>An Atom can turn into both solid and liquid form depending on the temperature of its surroundings </em>
<em>Explanation:</em>
<em>Scientists have discovered a new state of physical matter in which atoms can exist as both solid and liquid simultaneously.
Researchers have found, however, that some elements can, when subjected to extreme conditions, take on the properties of both solid and liquid states.</em>
Earth contains huge quantities of water in its oceans, lakes, rivers, the atmosphere, and believe it or not, in the rocks of the inner Earth. Over millions of years, much of this water is recycled between the inner Earth, the oceans and rivers, and the atmosphere. This cycling process means that freshwater is constantly made available to Earth's surface where we all live. Our planet is also very efficient at keeping this water. Water, as a vapor in our atmosphere, could potentially escape into space from Earth. But the water doesn't escape because certain regions of the atmosphere are extremely cold. (At an altitude of 15 kilometers, for example, the temperature of the atmosphere is as low as -60° Celsius!) At this frigid temperature, water forms solid crystals that fall back to Earth's surface.
Many people live faraway from freshwater sources. They need to carry their water home.
While our planet as a whole may never run out of water, it's important to remember that clean freshwater is not always available where and when humans need it. In fact, half of the world's freshwater can be found in only six countries. More than a billion people live without enough safe, clean water.
Also, every drop of water that we use continues through the water cycle. Stuff we put down the drain ends up in someone or something else's water. We can help protect the quality of our planet's freshwater by using it more wisely.
Answer:
the answer is destructive interference
your answer is c. two atoms of oxygen.
<u>Answer:</u> The mass of original oxalic acid sample is 6.75 grams
<u>Explanation:</u>
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

To calculate the mass of solute, we use the equation used to calculate the molarity of solution:

Given mass of oxalic acid = ? g
Molar mass of oxalic acid = 90 g/mol
Molarity of solution = 0.075 M
Volume of solution = 1.00 L
Putting values in above equation, we get:

Hence, the mass of original oxalic acid sample is 6.75 grams