Mercury, Venus, Earth,Mars
This problem is requiring the empirical formula for CaCO₃, which is its molecular formula, and turns out to be equal, this is A. CaCO3 according to the following:
<h3>Empirical formulas:</h3><h3 />
In chemistry, molecular formulas show both the actual type and number of atoms in a chemical compound, based on the elements across the periodic table and the subscripts standing for the number of atoms in the compound.
However, the empirical formula is a reduced expression of the molecular one, which shows the minimum number of atoms in a compound after simplifying to the smallest whole numbers.
In such a way, since the given compound is CaCO₃ and both Ca and C have a one as their subscript, it is not possible to simplify any further and therefore the empirical formula equals the molecular one this time, making the answer to be A. CaCO3.
Learn more about empirical formulas: brainly.com/question/1247523
It is important because if the sample size is smaller, outliers could skew the data more than if it was large.
Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol
Red giants produce "metals", i.e., heavier elements.
The first step is helium conversion into
<span>carbon</span>