If we were to make room for errors, there should really be no limiting reagent because practically all of both Nitrogen and Hydrogen is used up during this reaction. If this values were actually exact, then Nitrogen would be the limiting reagent, but a very very little amount of Nitogen is needed for all the Hydrogen to react.
We solve this problem by first writing the equation
N2 + 3H2 = 2NH3
N2 = 14g*2 = 28g, 3H2 = 3(1*2) = 6g
so 28g of Nitrogen needs 6g of Hydrogen for this reaction. Thus if we had 10.67g of Hydrogen in the reaction, 6g*49.84g/28g of hydrogen is needed to react = 10.68g of Hydrogen, but since we have 10.7g of it thus it is excess and thus the limiting reagent has to be Nitrogen, but notice that 10.68g and 10.7g are practically the same, so there might actually not be a limiting reagent. Using the other value(10.7), the amount of Nitrogen required would be 10.7g*28g/6g = 49.93, and since this is slightly more than the 49.84g we have, this confirms that Nitrogen is the limiting reagent. But note still that since this values are really close, there is a possibility that there is neither a limiting nor an excess reagent
Answer:
C4H6 + 2HBr = C4H8Br2
Explanation:
Alkynes are organic molecules made of the functional group carbon-carbon triple bonds and are written in the empirical formula of CnH2n−2. They are unsaturated hydrocarbons.
Furthermore, Halogenation reaction of any alkyne such as but-2-yne with any of the hydro halogenated compounds such as HBr, HCl, HF or HI will give an alkane that will have the same number of carbon atoms in the starting material and in the final product.
Halogenation reaction is a reaction that occurs when one or more halogens are added to a substance. Halogens is the seventh column in the periodic table and it include fluorine, chlorine, bromine, iodine, and astatine.
Answer:
c) It describes the affinity an atom has for an electron.
Explanation:
C quite literally describes what electronegativity is, you can rule out most others by looking at periodic trends as attached below.
The molarity is a concentration unit which defined as the number of moles of solute divided by the number of liters of solution. So the molarity of the solution is 3/2=1.5 mol/L.