Answer:
5 L
Explanation:
Use Charles law and rearrange formula
Change C to K
- Hope that helped! Please let me know if you need further explanation.
<h2>Answer:</h2>
<u>Temperature dependency is responsible for the process that hot water freeze faster than cold water.</u>
<h2>Explanation:</h2>
The effect given above is called Mpemba Effect. According to this idea hot water freezes more quickly as compared to cold water. But until now there is no convincing explanation for this strange phenomenon. One idea is that hot containers make better thermal contact with a refrigerator and so conduct heat more efficiently because a good conductor is good fro the transfer of heat. Another idea about this effect is that warm water evaporates more quickly and since this is an endothermic process, it cools the water making it freeze more quickly.
Tinnitus is the ringing in ears or buzzing and hissing
Answer:
(a)

(b)

Explanation:
Hello,
(a) In this case, as the reaction is second-ordered, one uses the following kinetic equation to compute the concentration of NOBr after 22 seconds:
![\frac{1}{[NOBr]}=kt +\frac{1}{[NOBr]_0}\\\frac{1}{[NOBr]}=\frac{0.8}{M*s}*22s+\frac{1}{0.086M}=\frac{29.3}{M}\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BNOBr%5D%7D%3Dkt%20%2B%5Cfrac%7B1%7D%7B%5BNOBr%5D_0%7D%5C%5C%5Cfrac%7B1%7D%7B%5BNOBr%5D%7D%3D%5Cfrac%7B0.8%7D%7BM%2As%7D%2A22s%2B%5Cfrac%7B1%7D%7B0.086M%7D%3D%5Cfrac%7B29.3%7D%7BM%7D%5C%5C)
![[NOBr]=\frac{1}{29.2/M}=0.0342M](https://tex.z-dn.net/?f=%5BNOBr%5D%3D%5Cfrac%7B1%7D%7B29.2%2FM%7D%3D0.0342M)
(b) Now, for a second-order reaction, the half-life is computed as shown below:
![t_{1/2}=\frac{1}{k[NOBr]_0}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cfrac%7B1%7D%7Bk%5BNOBr%5D_0%7D)
Therefore, for the given initial concentrations one obtains:

Best regards.
The answer is b_______________\\\