The answer is $5.40. hope this helped <3
Number of child tickets bought is 20
<h3><u>
Solution:</u></h3>
Given that It cost 5 dollars for a child ticket and 8 dollars for a adult ticket
cost of each child ticket = 5 dollars
cost of each adult ticket = 8 dollars
Let "c" be the number of child tickets bought
Let "a" be the number of adult tickets bought
Total tickets sold were 110 bringing in 820 dollars
<em>Number of child tickets bought + number of adult tickets bought = 110</em>
c + a = 110 ----- eqn 1
<em><u>Also we can frame a equation as:</u></em>
Number of child tickets bought x cost of each child ticket + number of adult tickets bought x cost of each adult ticket = 820

5c + 8a = 820 -------- eqn 2
Let us solve eqn 1 and eqn 2 to find values of "c" and "a"
From eqn 1,
a = 110 - c ------ eqn 3
Substitute eqn 3 in eqn 2
5c + 8(110 - c) = 820
5c + 880 - 8c = 820
-3c = - 60
c = 20
Therefore from eqn 3,
a = 110 - 20 = 90
a = 90
Therefore number of child tickets bought is 20
The height at t seconds after launch is
s(t) = - 16t² + V₀t
where V₀ = initial launch velocity.
Part a:
When s = 192 ft, and V₀ = 112 ft/s, then
-16t² + 112t = 192
16t² - 112t + 192 = 0
t² - 7t + 12 = 0
(t - 3)(t - 4) = 0
t = 3 s, or t = 4 s
The projectile reaches a height of 192 ft at 3 s on the way up, and at 4 s on the way down.
Part b:
When the projectile reaches the ground, s = 0.
Therefore
-16t² + 112t = 0
-16t(t - 7) = 0
t = 0 or t = 7 s
When t=0, the projectile is launched.
When t = 7 s, the projectile returns to the ground.
Answer: 7 s
Hey, what do you need help with ?