First a balanced reaction equation must be established:

→

Now if mass of aluminum = 145 g
the moles of aluminum = (MASS) ÷ (MOLAR MASS) = 145 g ÷ 30 g/mol
= 4.83 mols
Now the mole ratio of Al : O₂ based on the equation is 4 : 3
[
4Al +
3 O₂ → 2 Al₂O₃]
∴ if moles of Al = 4.83 moles
then moles of O₂ = (4.83 mol ÷ 4) × 3
=
3.63 mol (to 2 sig. fig.)
Thus it can be concluded that
3.63 moles of oxygen is needed to react completely with 145 g of aluminum.
When The balanced equation is:
2Al + 3CuCl2 ⇒3 Cu + 2AlCl3
So, we want to find the limiting reactant:
1- no. of moles of 2Al = MV/n = (Wt * V )/ (M.Wt*n*V) = Wt / (M.Wt *n)
where M= molarity, V= volume per liter and n = number of moles in the balanced equation.
by substitute:
∴ no. of moles of 2Al = 0.2 / (26.98 * 2)= 0.003706 moles.
2- no.of moles of 3CuCl2= M*v / n = (0.5*(15/1000)) / 3= 0.0025 moles.
So, CuCl2 is determining the no.of moles of the products.
∴The no. of moles of 3Cu = 0.0025 moles.
∴The no.of moles of Cu= 3*0.0025= 0.0075 moles.
and ∵ amount of weight (g)= no.of moles * M.Wt = 0.0075 * M.wt of Cu
= 0.0075 * 63.546 =0.477 g
Answer:
c ) protons and neutrons
Explanation:
Protons and neutrons have approximately the same mass, but they are both much more massive than electrons (approximately 2,000 times as massive as an electron). The positive charge on a proton is equal in magnitude to the negative charge on an electron.