I think the correct answer from the choices listed above is option 1. It would be the molecule carbon disulphide that will be polar, based on the structure of the choices given. Hope this answers the question. Have a nice day. Feel free to ask more questions.
The volume of H₃PO₄ : 13.33 ml
<h3>Further explanation</h3>
Given
0.003 M Phosphoric acid-H₃PO₄
40 ml of 0.00150 M Calcium hydroxide-Ca(OH)₂
Required
Volume of H₃PO₄
Solution
Acid-base titration formula
Ma. Va. na = Mb. Vb. nb
Ma, Mb = acid base concentration
Va, Vb = acid base volume
na, nb = acid base valence (amount of H⁺/OH⁻)
H₃PO₄⇒3H⁺ + PO₄³⁻ ⇒ 3 H⁺ = valence = 3
Ca(OH)₂⇒Ca²⁺ + 2OH⁻⇒ 2 OH⁻ = valence = 2
Input the value :
a = H₃PO₄, b = Ca(OH)₂
0.003 x Va x 3 = 0.0015 x 40 x 2
Va = 13.33 ml
By 1.23 x 1024 you mean 10 to the power of 24 molecules? If so all you need to do is divide the number of molecules you have by Avagadros number, 6.022 x 10^23. This will give you the mols of water, or the mols of anything, since there is always 6.022 x 10^23 molecules in 1 mol of substance.
1.23x10^24 atoms/6.022x10^23 atom/mol = 2.04 mol H20
NaOH+HCl-> NaCl+H2O
1 mole of NaOH
1 mole of HCl.
To calculate volume of NaOH
CaVa/CbVb= Na/Nb
Where Ca=2M
Cb=1M
Va=200cm³
Vb=xcm³
Substitute into the equation.
2×200/1×Vb=1/1
400/Vb=1/1
Cross multiply
Vb×1=400×1
Vb=400cm³
To calculate the mass of sodium chloride, NaCl from the neutralization rxn.
Mole of NaCl=1
Molar mass of NaCl= 23+35.5=58.5
Mass=xgrammes.
Mass of NaCl=Number of moles × Molar mass.
Substitute
Mass of NaCl= 1×58.5
=58.5g
This is what I could come up with.