The density of the sample is:
Density = mass / volume
Density = 9.85 / 0.675
Density = 14.6 g/cm³
If the sample has 95% gold, and 5% silver, its density should be:
0.95 x 19.3 + 0.05 x 10.5
Theoretical density = 18.9 g/cm³
The difference in theoretical and actual densities is very large, making it likely that the jeweler was not telling the truth.
Answer:
Explanation:
Given parameters:
Mass of CuCl₂ = 2.50g
Mass of Al = 0.50g
Unknown:
Number of moles of CuCl₂ and Al = ?
Solution:
To solve this problem, we must understand that the number of moles is a fundamental property used in stoichiometry calculations.
Number of moles = 
Molar mass of CuCl₂ = 63.6 + 2(35.5) = 134.5g/mole
Molar mass of Al = 26.98g/mole
Number of moles of CuCl₂ =
= 0.019moles
Number of moles of Al =
= 0.019moles
<span>The s sublevel has just one orbital, so can contain 2 electrons max. The p sublevel has 3 orbitals, so can contain 6 electrons max. The d sublevel has 5 orbitals, so can contain 10 electrons max. And the 4 sublevel has 7 orbitals, so can contain 14 electrons max.
So, having this in mind, 10 electrons in total can be contained in the 4d sublevel.
</span>
Answer:

Explanation:
Hello.
In this case, since this is a system in which the water is heated up and the metal is cooled down in a calorimeter which is not affected by the heat lose-gain process, we can infer that the heat lost by the metal is gained be water, it means that we can write:

Thus, in terms of masses, specific heats and temperatures we can write:

Whereas the equilibrium temperature is the given final temperature of 28.4 °C and we can compute the specific heat of the metal as shown below:

Plugging the values in and since the density of water is 1.00 g/mL so the mass is 80.0g, we obtain:

Best regards!