Answer:
Mass in kg = 4.7*10^19 kg
Mass in tons = 5.2*10^16 tons
Explanation:
<u>Given:</u>
Total volume of sea water = 1.5*10^21 L
Mass % NaCl in seawater = 3.1%
Density of seawater = 1.03 g/ml
<u>To determine:</u>
Total mass of NaCl in kg and in tons
<u>Calculation:</u>
Unit conversion:
1 L = 1000 ml
The volume of seawater in ml is:



To convert mass from g to Kg:
1000 g = 1 kg

To convert mass from g to tons:
1 ton = 9.072*10^6 g

In order to calculate the number of atoms, we must first know the number of moles present. And
moles = (mass present) / (molecular mass)
Therefore, the moles of Mg present are
170 / 24 = 7.08
The number of atoms in a mole of substance is given by Avagadro's Number which is 6.02 x 10^23
Since there are 7.08 moles, there are:
7.08 * 6.02*10^23
= 4.26 * 10^24 atoms
Answer:
18.2 g.
Explanation:
You need to first figure out how many moles of nitrogen gas and hydrogen (gas) you have. To do this, use the molar masses of nitrogen gas and hydrogen (gas) on the periodic table. You get the following:
0.535 g. N2 and 1.984 g. H2
Then find out which reactant is the limiting one. In this case, it's N2. The amount of ammonia, then, that would be produced is 2 times the amount of moles of N2. This gives you 1.07 mol, approximately. Then multiply this by the molar mass of ammonia to find your answer of 18.2 g.
Answer:
Pretty sure the answer is A on Plato
Explanation:
I looked it up, and it said that raising the temperature would cause the equilibrium to shift left.