Answer:
the molar mass is the mass of a given chemical element or chemical compound divided by the amount of substance
40 g NaOH. You must use 40 g NaOH to prepare 10.0 L of a solution that has a pH of 13.
<em>Step 1</em>. Calculate the pOH of the solution
pOH = 14.00 – pH = 14.00 -13 = 1
<em>Step 2</em>. Calculate the concentration of NaOH
[NaOH] = [OH^(-)] = 10^(-pOH) mol/L = 10^(-1) mol/L = 0.1 mol/L
<em>Step 3</em>. Calculate the moles of NaOH
Moles of NaOH = 10.0 L solution × (0.1 mol NaOH/1 L solution) = 1 mol NaOH
<em>Step 4</em>. Calculate the mass of NaOH
Mass of NaOH = 1 mol NaOH × (40.00 g NaOH/1 mol NaOH) = 40 g NaOH
Answer:
D. ionic sodium phosphate (Na3PO4)
Explanation:
Molecule for molecule, the solute that raises the boiling point of water the most is the one that makes the most particles in the solution. Lithium chloride breaks up into two ions (Li+ and Cl-). So does sodium chloride (Na+ and Cl-). Molecular molecules don't break up at all, so sucrose has only 1 particle per molecule. Sodium phosphate makes 4 total particles (3 Na+ ions and 1 PO4^3-). And magnesium bromide would make 3 particles (1 Mg2+ and 2 Br-). So the most is 4.
The radioactive decay of unstable isotopes continually generates new energy within Earth's crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection.