Answer:
t1 = t2 + 3.02 V = 41.5
V t1 - 1/2 g t1^2 = V t2 - 1/2 g t2^2
Both stones reach the same height after the specified times
V (t1 - t2) = g/2 (t1^2 - t2^2) = g/2 (t1 - t2) (t1 + t2)
2 V / g = t1 + t2 = 2t1 + 3.02
t1 = V / g - 1.51 = 41.5 / 9.8 -1.51 = 2.72 s
t2 = t1 + 3.02 = 5.74 sec
Check:
41.5 * 2.72 - 4.9 * 2.72^2 = 76.6 m
41.5 * 5.74 - 4.9 * 5.74^2 = 76.8 m
Speed of second stone = 41.5 - 9.8 * 2.72 = 14.8 m/s
True I hope this helps you out
Answer:
38.64 feet
Explanation:
x=x0 + vx0t + 1/2axt2
x= 0 + 0 + 1/2 X 32.17 ft/sec2 X 1.55 sec2
x = 38.64 feet
Answer:
Explanation:
a ) Time period T = 2 s
Angular velocity ω = 2π / T
= 2π / 2 = 3.14 rad /s
Initial moment of inertia I₁ = 200 + mr²
= 200 + 25 x 2.5²
=356.25
Final moment of inertia
I₂ = 200 + 25 X 1.5 X 1.5
= 256.25
b ) We apply law of conservation of momentum
I₁ X ω₁ = I₂ X ω₂
ω₂ = I₁ X ω₁ / I₂
Putting the values

ω₂ = 4.365 rad s⁻¹
c ) Increase in rotational kinetic energy
=1/2 I₂ X ω₂² - 1/2 I₁ X ω₁²
.5 X 256.25 X 4.365² - .5 X 356.25 X 3.14²
= 684.95 J
This energy comes from work done against the centripetal pseudo -force.
Answer:
a) True.
Explanation:
If you turn the wheel in the direction of the turn before beginning the turning maneuver then it's possible that there might be not enough space available for turning and also if you are waiting for the traffic to get clear with rear ended then it will get pushed forward onto the coming traffic.