The velocity of the ferry relative to the current is 4.5 m/s.
<h3>Relative velocity</h3>
- Relative velocity is the velocity of a body as observed from the reference point of another body either stationary or in motion.
Since the river is flowing parallel to the shore and the ferry is moving perpendicular to the shore, their velocities are at right angles to each other.
The two velocities form a right angled-triangle of sides 2, 4 and a hypotenuse which gives the relative velocity of the ferry to the current.
Using Pythagoras rule:
- Let c be the hypotenuse
- a = velocity of the ferry, and
- b = the velocity of the current, and
c² = 4² + 2²
c² = 16 + 4
c = 20
c = √20
c = 4.47 m/s
c ≈ 4.5 m/s
Therefore, the velocity of the ferry relative to the current is 4.5 m/s.
Learn more about relative velocity and Pythagoras rule at: brainly.com/question/25617868
Density = mass / volume ;
1 Cubic Centimeter = 0,000001 Cubic Meter
8 cm^3 = 0.000008 m^3
12,9 g = 0,0129 kg
The density is 0,0129 kg/ 0,000008 m^3 = <span><u>1612,5 kg/m^3</u> </span>
<span> The box is exerting a force of its weight. So we'll use W=mg (Note: you can use the notation F=ma, doesn't matter since weight IS a force.) We can call g negative since it's directed down towards the earth.
</span>
<span>W = 5kg(-9.8 m/(s^2)) = -49 N
</span>
<span>Thus, the box exerts a force of 49N downwards. </span>
Λ
![= 550 * 10^{-9}\] m. D = 3.50*10^-6 m.](https://tex.z-dn.net/?f=%20%3D%20550%20%2A%2010%5E%7B-9%7D%5C%5D%20m.%0A%0AD%20%3D%203.50%2A10%5E-6%20m.)

Then you need to find x when n=1
or

≈θ for θ<<1 , so θ=

Then you can find rhe distance of<span> bright fringe from the center:</span>