Answer:
Part (i)
Z = 39.06 ohm
Part (ii)
R = 21.7 ohm
Explanation:
a) here we know that
maximum value of EMF = 125 V
maximum value of current = 3.20 A
now by ohm's law we can find the impedence as
now we will have
Part b)
Now we also know that
now we have
I think it's A) Sunspots. I hope this helps:)
Explanation:
It is given that, Onur drops a basketball from a height of 10 m on Mars, where the acceleration due to gravity has a magnitude of 3.7 m/s².
The second equation of kinematics gives the relationship between the height reached and time taken by it.
Here, the ball is droped under the action of gravity. The value of acceleration due to gravity on Mars is positive.
We want to know how many seconds the basketball is in the air before it hits the ground. So, the formula is :
t is time taken by the ball to hit the ground
is initial speed of the ball
So, the correct option is (A).
The concepts of force<span>, mass, and weight play critical roles. Newton's Laws of. Motion ... the person stops </span>pushing<span>? ... F </span>net<span> =10 N </span>2<span> N. = 8 N (to the right) a = F </span>net<span> m. = 8 N. 5 kg. =1.6 m s. </span>2<span> ... </span>Two equal forces<span> act on an </span>object<span> in the directions shown. </span>If<span> these ... </span>Two<span> connected carts </span>being accelerated by a force<span> F applied by.</span>
Answer:
By a factor of 1/4.
Explanation:
The impulse force that applies to an object undergoing rapid deceleration just before coming to a stop on the ground is given by the following formula,
in which , represent the change in momentum and the time taken for that change.
If one increases the time that is taken for the momentum change (which remains constant for this situation) by a factor 4 and if that new force is represented by , the following manipulation confirms the answer to this question.
Here is the force that was applied to the object previously.
#SPJ4