Alright, let's do all of these (though this is a bit long).
1.
The constant is 1.8. All other values are coefficients to variables, which as the name implies will change.
2.
1 hour is 60 minutes, 1 minute is 60 seconds.
So, 4.2 *60 *60 = 15120 seconds.
3.
<span>−5x−4(x−6)=−3-5x-4(x-6)=-3
Let's move all x to one side, and all other numbers to another.
-5x-4(x-6)=-3-5x-4(x-6)=-3
x can be any value you want, if you actually solve this you'll only end up with -3 = -3, which is correct, of course.
Let me show you:
</span><span>−5x−4(x−6)=−3-5x-4(x-6)=-3
+5x +4(x-6) +5x +4(x-6)
-3 = -3
The value of x is irrelevant, then. X can be any real number.
4.
I'm going to assume it was an error in printing with this? If not please correct me.
m=a+2b(or b2)
subtract 2b from each
a=m-2b
(This question seems kind of odd. We should probably address this in the comments.)
5.
</span><span>5(x−2)<−3x+6
Move all x to one side, numbers to other.
5x-10<-3x+6
+3x +3x
+10 +10
8x<16
/8
<span>x < 2
</span>6.
y-3=3(x-5)
alright, to find zeros set one variable to zero and solve
x first
-3=3x-15
+15 +15
3x=12
/3
x=4
x-int is (4,0)
now y
</span>y-3=3(0-5)
y-3=-15
+3 +3
y=-12
so y-int is (0,-12)
i've got to sleep now so i'll do the rest tomorrow. Sorry for the incomplete answer.
Answer:
P(B|A)=0.25 , P(A|B) =0.5
Step-by-step explanation:
The question provides the following data:
P(A)= 0.8
P(B)= 0.4
P(A∩B) = 0.2
Since the question does not mention which of the conditional probabilities need to be found out, I will show the working to calculate both of them.
To calculate the probability that event B will occur given that A has already occurred (P(B|A) is read as the probability of event B given A) can be calculated as:
P(B|A) = P(A∩B)/P(A)
= (0.2) / (0.8)
P(B|A)=0.25
To calculate the probability that event A will occur given that B has already occurred (P(A|B) is read as the probability of event A given B) can be calculated as:
P(A|B) = P(A∩B)/P(B)
= (0.2)/(0.4)
P(A|B) =0.5
Answer:
answer is 10
Step-by-step explanation:
It costs 0.06 cents each minute.
Explanation : $15/250 minutes = $0.06
Answer:
8710 units
Step-by-step explanation:
<em>Step 1: Write all the data</em>
Fixed cost: $9000
Average variable cost: 9.3 per unit
Total cost: 90,000
Total units: x
<em>Step 2: Find the total variable cost</em>
Average variable cost is per unit so it has to be multiplied by the number of units to find the total variable cost.
Total variable cost = average variable cost per unit x number of units
Total variable cost = 9.3x
<em>Step 3: Make the formula for finding x</em>
Total cost = total fixed cost + total variable cost
90,000 = 9000 + 9.3x
81000 = 9.3x
x = 8709.67
Rounded off to 8710 units
!!