The maximum mass of B₄C that can be formed from 2.00 moles of boron (III) oxide is 55.25 grams.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the relative amount of moles of reactants and products present in the given chemical reaction.
Given chemical reaction is:
2B₂O₃ + 7C → B₄C + 6CO
From the stoichiometry of the reaction, it is clear that:
2 moles of B₂O₃ = produces 1 mole of B₄C
Now mass of B₄C will be calculated by using the below equation:
W = (n)(M), where
- n = moles = 1 mole
- M = molar mass = 55.25 g/mole
W = (1)(55.25) = 55.25 g
Hence required mass of B₄C is 55.25 grams.
To know more about stoichiometry, visit the below link:
brainly.com/question/25829169
#SPJ1
Answer:
Just click on the answer, if it is an external link DO NOT CLICK IT. it may contain dangerous stuff including h*cked stuff.
Explanation:
I need the answers or a picture to help
A compound is a substance that can be separated into simpler substances only by chemical means.
Answer:
Q1. C
Q2 and Q3 are correct.
Explanation:
Since F=ma, and the force is a constant,
for the greatest acceleration, the mass of the ball must be the least.
Thus ball C has the greatest acceleration.
Let's check:
A) F=ma
a=F/m
a= F/68
B) a=F/72
C) a= F/64 (✓)
The smaller the denominator, the larger the value of a.
(Think: 1/2 >1/3)