The question is incomplete, here is the complete question:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy Ea = 71.0 kJ/mol . If the rate constant of this reaction is 6.7 M^(-1)*s^(-1) at 244.0 degrees Celsius, what will the rate constant be at 324.0 degrees Celsius?
<u>Answer:</u> The rate constant at 324°C is
<u>Explanation:</u>
To calculate rate constant at two different temperatures of the reaction, we use Arrhenius equation, which is:
where,
= equilibrium constant at 244°C =
= equilibrium constant at 324°C = ?
= Activation energy = 71.0 kJ/mol = 71000 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature =
= final temperature =
Putting values in above equation, we get:
Hence, the rate constant at 324°C is
Answer:
ΔH for formation of 197g Fe⁰ = 1.503 x 10³ Kj => Answer choice 'B'
Explanation:
Given Fe₂O₃(s) + 2Al⁰(s) => Al₂O₃(s) + 2Fe⁰(s) + 852Kj
197g Fe⁰ = (197g/55.85g/mol) = 3.527 mol Fe⁰(s)
From balanced standard equation 2 moles Fe⁰(s) => 852Kj, then ...
3.527 mole yield (a higher mole value) => (3.527/2) x 852Kj = 1,503Kj (a higher enthalpy value).
______
NOTE => If 2 moles Fe gives 852Kj (exo) as specified in equation, then a <u>higher energy value</u> would result if the moles of Fe⁰(s) is <u>higher than 2 moles</u>. The ratio of 3.638/2 will increase the listed equation heat value to a larger number because 197g Fe⁰(s) contains more than 2 moles of Fe⁰(s) => 3.527 mole Fe(s) in 197g. Had the problem asked for the heat loss from <u>less than two moles Fe⁰(s)</u> - say 100g Fe⁰(s) (=1.79mole Fe⁰(s)) - then one would use the fractional ratio (1.79/2) to reduce the enthalpy value less than 852Kj.
Halogens is defined as the group of 7 periodic table. As, every periodic table contains 7 valence electrons and they only need 1 more to complete an outer shell, that is why they are extremely reactive. And according to the law that recurring patterns of the properties of elements arise when they are arranged in order of increasing atomic number. As the halogen all act very similarly with each other in chemical reaction, it is true.
Answer:
B) irreversible process
Explanation:
The process given here is irreversible.
Answer:
12.33 cal/sec
Explanation:
As we know,
1 Kcal = 1000 cal
So,
0.74 Kcal = X cal
Solving for X,
X = (0.74 Kcal × 1000 cal) ÷ 1 Kcal
X = 740 cal
Also we know that,
1 Minute = 60 Seconds
Therefore, in order to derive cal/sec unit replace 0.74 Kcal by 740 cal and 1 min by 60 sec in given unit as,
= 740 cal / 60 sec
= 12.33 cal/sec