Answer:
168.4 mL
Explanation:
Data Given
initial volume V1 of gas in balloon = 100 mL
initial pressure P1 of gas in balloon = 3.2 atm
final pressure P2 of gas in balloon = 1.9 atm
final volume V2 of gas in balloon = ?
Solution:
This problem will be solved by using Boyle's law equation at constant Temperature.
The formula used
P1V1 = P2V2
As we have to find out Volume, so rearrange the above equation
V2 = P1V1 / P2
Put value from the data given
V2 = 100 mL x 3.2 atm / 1.9 atm
V2 = 168.4 mL
So the final Volume of gas in baloon = 168.4 mL
AH1 = m * c1 * AT1 calculate this for ice (-25C to 0C) AH2 = AHfus(1 mole)=6.01 kJ = 6010 J AH3 = m *c3 * AT3 calculat this for water (0C to 100C) AH4 = AHvap(1mole)=40.67 kJ = 40670 J AH5= m * c5 * AT5 calculate this for steam (100C to 125C)
Sum ---- AH1+AH2+AH3+AH4+AH5
Data m=18g (1mole water)
c1=specific heat ice= 2.09 J/g K c3=specific heat water= 4.18 J/g K c5=specific heat steam= 1.84 J/g K
AT = (Tend - Tinitial) as this is a difference between temperatures it doesn't matter the units Celsius or Kelvin. Kelvin (K)=Celsius (C)+273.15
AT1 = 0C - (-25C)= 25C= 273.15K - 248.15K= 25K AT3= 100C - 0C = 100C= 100K AT5= 125C - 100C= 25C=25K
Volume:
2.00 x 11.0 x 11.0 => 242 cm³
mass : 213 g
D = m / V
D = 213 / 242
D = 0.880 g/cm³
Answer B
hope this helps!
Answer:
Explanation:
Secondary consumers are organisms that eat primary consumers for energy. Primary consumers are always herbivores, or organisms that only eat autotrophic plants.
Carnivores only eat other animals, and omnivores eat both plant and animal matter.
By sharing electeons with each other
if they lose or gain electrons then they only form ions
they cannot lose neutrons as they are locked inside the nucleus