Contact metamorphism occurs adjacent to igneous intrusions and results from high temperatures associated with the igneous intrusion. Since only a small area surrounding the intrusion is heated by the magma, metamorphism is restricted to the zone surrounding the intrusion, called a metamorphic or contact aureole
Answer:
W = 0.842 J
Explanation:
To solve this exercise we can use the relationship between work and kinetic energy
W = ΔK
In this case the kinetic energy at point A is zero since the system is stopped
W = K_f (1)
now let's use conservation of energy
starting point. Highest point A
Em₀ = U = m g h
Final point. Lowest point B
Em_f = K = ½ m v²
energy is conserved
Em₀ = Em_f
mg h = K
to find the height let's use trigonometry
at point A
cos 35 = x / L
x = L cos 35
so at the height is
h = L - L cos 35
h = L (1-cos 35)
we substitute
K = m g L (1 -cos 35)
we substitute in equation 1
W = m g L (1 -cos 35)
let's calculate
W = 0.500 9.8 0.950 (1 - cos 35)
W = 0.842 J
Answer:
The well is 23.3 m
Explanation:
As the bucket is lifted out of the well, energy in the man is being transferred to the bucket as gravitational potential energy.
Work done against gravity = mass * height * acceleration due to to gravity
W = mgh
5 920 J = 25.9 kg * h * 9.8 m/s²
h = 23.3 m
Regardless of the time of year, the northern and southern hemispheres always experience opposite seasons. This is because during summer or winter, one part of the planet is more directly exposed to the rays of the Sun than the other, and this exposure alternates as the Earth revolves in its orbit.
First is melts then it expands next it gets cooler Finally it gains ener. Hope this helps you out.