Your answer would be C9H16
1. Answer;
=56 g/mol
Explanation and solution;
PV = nRT
nRT= mass/molar mass (RT)
molar mass = (mass/V ) × (RT/P)
= Density × (RT/P)
Molar mass = 2.0 g/L × (0.0821 × 323 K)/0.948 atm
Molar mass = 56 g/mol
2. Answer;
Molecular mass is C4H8
Explanation;
Empirical mass × n = molar mass
Empirical mass for CH2 = 14 g/mol
Therefore;
56 g/mol = 14 g/mol × n
n = 4
The molecular formula= 4(CH2)
= C4H8
Answer:
3H₂SO₄ + 2Al₂(SO₄)₃ → Al₂(SO₄)₃ + 3H₂
Explanation:
3H₂SO₄ + 2Al₂(SO₄)₃ → Al₂(SO₄)₃ + 3H₂
In this type of reaction, one substance is replacing another:
A + BC → AC + B
In a single displacement reaction, atoms replace one another based on the activity series. Elements that are higher in the activity series. Also, if the element that is to replace the other in a compound is more reactive the reaction will occur. If it is less reactive, there will be no reation.
In the first equation, fluorine is more reactive than bromine. Therefore, bromine cannot replace bromine.
In the second equation, the displacement is between hydrogen and aluminium. Hydrogen is lower in the activity series, this implies that aluminum will replace it.
Answer with Explanation:
"Mass" and "weight" should never be used interchangeably with each other. Mass refers to the <u>total amount of matter</u><u> that can be measured in an object, </u>while weight refers to the<u> measure of the</u><u> force of gravity</u><u> that is acting on the object's mass.</u>
The mass of an object is<u> constant</u> (meaning, it doesn't change even if the object will be placed on another location) while the weight of an object relies on the <em>force of gravity.</em> So, this means that your mass on Earth and on the moon are identical, however, your weight on Earth and on the Moon are different. You will weigh lesser on the Moon because it has a lesser surface gravity than that of Earth.
So, this explains the answer.
Answer:
if i remember correctly i beleive its A 1.8 x 10^24
but im not for sure also i think you forgot the 24
Explanation: