Answer:
<h2>2 m</h2>
Explanation:
The wavelength of a wave can be found by using the formula

where
c is the speed of the wave
f is the frequency
From the question
c = 5 m/s
f = 2.5 Hz
We have

We have the final answer as
<h3>2 m </h3>
Hope this helps you
Explanation:
covalent bond poor thermal conductivity
molecular compounds
metallic bond ductile
electron sea model
ionic bond crystalline
hard and brittle
Covalent compounds have the following properties:
- Gases and volatile liquids or low melting point solids
- Often insoluble in polar solvents
- Mainly non - conductors
- Have slow reactions
Metallic compounds:
- Have good malleability, ductility, electrical and thermal conductivity.
- A large sea of electron by jointly packed atoms.
- They are mostly in metals
- Accounts for the bulk of the physical properties displayed by metals
Ionic compounds:
- High melting and boiling point
- Soluble in polar liquids
- Conducts electricity in molten or aqueous forms.
- Mostly crystalline solids
- Usually hard and brittle
- Undergoes fast chemical reactions
learn more:
Covalent bonds brainly.com/question/5258547
Ionic bond brainly.com/question/6071838
#learnwithBrainly
Answer:
the water and alcohol interact, which means the water doesn't even dissolve the sugar or color as well as it normally would. Oil molecules are not polar so they cannot dissolve either the coloring or the sugar.
Explanation:
5 plates is the highest amount that can be served
There’s only 5 sandwiches so 7 is automatically ruled out, there’s 14 corn cobs and 5 sandwiches only need 10 so it works out
<h3>
Answer:</h3>
The centripetal acceleration is 26.38 m/s²
<h3>
Explanation:</h3>
We are given;
- Mass of rubber stopper = 13 g
- Length of the string(radius) = 0.93 m
- Time for one revolution = 1.18 seconds
We are required to calculate the centripetal acceleration.
To get the centripetal acceleration is given by the formula;
Centripetal acc = V²/r
Where, V is the velocity and r is the radius.
Since time for 1 revolution is 1.18 seconds,
Then, V = 2πr/t, taking π to be 3.142 ( 1 revolution = 2πr)
Therefore;
Velocity = (2 × 3.142 × 0.93 m) ÷ 1.18 sec
= 4.953 m/s
Thus;
Centripetal acceleration = (4.953 m/s)² ÷ 0.93 m
= 26.38 m/s²
Hence, the centripetal acceleration is 26.38 m/s²