Answer:
The statement is considered to be true
Explanation:
The statement is true because when elements chemically combine, there are interactions between their valence electrons, causing the two elements to be bonded together to form what is known as a compound.
Compounds can only be formed from interactions between two or more elements. examples include:
Hydrogen + Oxygen = H2O (water)
Sodium + Chlorine = NaCl
Note that if atoms of the same element combine, what is formed is a molecule, not a compound. Some atoms usually do this to attain stability. examples include = O2 H2 and N2. They are oxygen molecule, hydrogen molecule, and nitrogen molecule respectively.
Compounds are only formed when different elements combine to attain electronic stability.
Answer:
See explanation
Explanation:
Molar mass is obtained as the sum of relative atomic masses as follow;
For CaBr = 40.08 + 79.90 = 119.98 g/mol
For BeBr = 9.012 + 79.90 = 88.912 g/mol
For CdBr2 = 112.41 + 2(79.90) = 272.21 g/mol
For CuBr2 = 63.55 + 2(79.90) = 223.35 g/mol
Answer:
it identifies reducing sugars (monosaccharide's and some disaccharides), which have free ketone or aldehyde functional group
Explanation:
It turns from turquoise to yellow or orange when it reacts with reducing sugars.
The enthalpy change of the reaction when sodium hydroxide and sulfuric acid react can be calculated using the mass of solution, temperature change, and specific heat of water.
The balanced chemical equation for the reaction can be represented as,

Given volume of the solution = 101.2 mL + 50.6 mL = 151.8 mL
Heat of the reaction, q =
Δ
m is mass of the solution = 151.8 mL * 
C is the specific heat of solution = 4.18 
ΔT is the temperature change = 
q = 
Moles of NaOH =
NaOH
Moles of
= 
Enthalpy of the reaction = 
Answer:
3.50 molal
Explanation:
Molality → Moles of solute / kg of solvent.
Let's convert the solvent's mass from g to kg
16.2 g . 1kg / 1000 g = 0.0162 kg
Let's determine the moles from the solute
2.61 g . 1 mol / 46 g = 0.0567 moles
Molality → 0.0567 mol / 0.0162 kg = 3.50 m