When children are small they are given vaccines that are usually dead viruses given to the body. These viruses don't cause damage to body and the body takes it as a real virus and prepare antibodies in the body but when a certain real disease or virus is in the body , the already presented antibodies fight with them for the protection of the body. These antibodies remain in the body so that when a disease or virus attacks the body the antibodies are already geared up to fight against them. Thus antibodies protect the body against invading microbes or viruses.
Sound travels most quickly through solids because _____.
answer is: because solids r the most sense.
The distance between molecules in solids r very small.Because they are so close, they can collide very quickly, i.e. it takes less time for a molecule of the solid to 'bump' into its neighbor. Solids are packed together tighter than liquids and gases, hence sound travels fastest in solids.
It is because precise amount measured is required for the reaction to take place chemically, and an accurate conclusion will prevent any dangerous and misleading conclusions made due to inaccurate data.
For example, in physics, every measurement we state the instrument uncertainty after the measurement, stating that it is not a definite certain measurement, but the smaller the value for the uncertainty, the more precise that instrument's data is.
Precise is important in terms of knowing how many moles or grams of reactant is required for this reaction to complete without any shortage or excess chemically. Accuracy is based on the conclusions we make in regards to the data and observations we make experimentally.
Answer:
1. 35 mg of H₃PO₄
2. 27 mol AlF₃; 82 mol F⁻
3. 300 mL of stock solution.
Explanation:
1. Preparing a solution of known molar concentration
Data:
V = 80 mL
c = 4.5 × 10⁻³ mol·L⁻¹
Calculations:
(a) Moles of H₃PO₄
Molar concentration = moles of solute/litres of solution
c = n/V
n = Vc = 0.080L × (4.5 × 10⁻³ mol/1 L) = 3.60 × 10⁻⁴ mol
(b) Mass of H₃PO₄
moles = mass/molar mass
n = m/MM
m = n × MM = 3.60 × 10⁻⁴ mol × (98 g/1 mol) = 0.035 g = 35 mg
(c) Procedure
Dissolve 35 mg of solid H₃PO₄ in enough water to make 80 mL of solution,
2. Moles of solute.
Data:
V = 4900 mL
c = 5.6 mol·L⁻¹
Calculations:
Moles of AlF₃ = cV = 4.9 L AlF₃ × (5.6 mol AlF₃/1L AlF₃) = 27 mol AlF₃
Moles of F⁻ = 27 mol AlF₃ × (3 mol F⁻/1 mol AlF₃) = 82 mol F⁻.
3. Dilution calculation
Data:
V₁= 750 mL; c₁ = 0.80 mol·L⁻¹
V₂ = ? ; c₂ = 2.0 mol·L⁻¹
Calculation:
V₁c₁ = V₂c₂
V₂ = V₁ × c₁/c₂ = 750 mL × (0.80/2.0) = 300 mL
Procedure:
Measure out 300 mL of stock solution. Then add 500 mL of water.
The buoyant force is the upward force or thrust...Simply, consider immersing your hand into a bucket of water. What happens to it? It raises (a little). The raising is due to the buoyant force. Basically it is the upward force/thrust that acts on any object immersed into a fluid. Hence why things float when out in water. Hope this helped!!