Answer:
the conversion factor is f= 6 mol of glucose/ mol of CO2
Explanation:
First we need to balance the equation:
C6H12O6(s) + O2(g) → CO2(g) + H2O(l) (unbalanced)
C6H12O6(s) + 6O2(g) → 6CO2(g) + 6H2O(l) (balanced)
the conversion factor that allows to calculate the number of moles of CO2 based on moles of glucose is:
f = stoichiometric coefficient of CO2 in balanced reaction / stoichiometric coefficient of glucose in balanced reaction
f = 6 moles of CO2 / 1 mol of glucose = 6 mol of glucose/ mol of CO2
f = 6 mol of CO2/ mol of glucose
for example, for 2 moles of glucose the number of moles of CO2 produced are
n CO2 = f * n gluc = 6 moles of CO2/mol of glucose * 2 moles of glucose= 12 moles of CO2
Answer:
Option (a) is the correct answer.
Explanation:
The law of conservation of energy states that energy can neither be created nor it can be destroyed. It can only be transformed from one form to another.
Therefore, the total amount of energy before and after a chemical reaction is the same. Thus, energy is conserved.
Therefore, we can conclude that option (a) is the correct answer.
The 3rd option is the answer
Answer:
mass of sodium reacted is 184.1 g
Explanation:
mass Na = X = ?
∴ mass NaCl = 468 g
∴ mass Cl = 0.248 g
∴ molar mass NaCl = 58.44 g/mol
∴ atomic mass Cl = 35.453 a.m.u
∴ atomic mass Na = 22.989 a.m.u
⇒ moles Na = (X gNa)*(mol Na/22.989 g) = X/22.989 mol Na
⇒ mass NaCl = (X/22.989 mol Na)*(mol NaCl/mol Na)*(58.44 gNaCl/mol NaCl) = 468 g NaCl
clearing "X":
⇒ ((58.44)(X))/(22.989) = 468 g
⇒ X = 184.1 g = mass Na reacted