Answer:
The four stages of technological design include identifying a need, designing and implementing a solution, and evaluating the solution.
I don't know what the options are, cause you didn't show them but, hope this helped.
Answer:
The answer is Observation.
For you to observe the things around you then you need to use all your sense organs....
I think the reaction that is occurring is CuSO₄(aq)+Na₂CO₃(aq)⇒CuCO₃(s)+Na₂SO₄(aq). Water in the hydrate will just become part of water in solution so it does not really matter for this question.
SInce we now know the balanced chemical equation, you can use stoichiometry to find the amount of reactants needed to produce 5g CuCO₃.
The first step to any stoichiometry question is to convert the mass given into moles. To do this you have to divide the mass by the molar mass of the compound the mass is referring to. The molar mass of CuCO₃ is 123.5g/mol so you have to divide 5g by 123.5g/mol to get 0.04047 moles of CuCO₃.
The next step in this qustoin is to find the number of moles of each reactant using the moles of product we found in the first step. To do this, we need go back and look at the equation to find the molar ratios which is shown through the coefficients. Since all of the coeficients in the chemical equation is 1, we know the molar ratios are all `1 to 1 and therefore the number of moels of each reactant is equal to the number of moles of the product found in step one. This means that you started off with 0.04047 moles of both CuSO₄ and Na₂CO₃.
The final step is to multiply the number moles of each reactant by its molar mass. the molar mass of CuSO₄ is 159.6g/mol and the molar mass of Na₂CO₃ is 106g/mol. When you multiply 0.04047mol by 159.6g/mol you get 6.4g and when you multiply 0.04047mol by 106g/mol you get 4.29g.
Therefore you started with 6.4g of CuSO₄ and 4.29g of Na₂CO₃.
I hope this helps.
Answer:
Image A
Explanation:
The hemisphere experiences summer when it is tilted towards the sun. Image a has the northern hemisphere tilted towards the sun.
The compound is 82.76% C and 17.24% H
In chemistry, the empirical formula of a chemical compound is the simplest whole number ratio of atoms present in a compound.
<h3>Describe the empirical formula.</h3>
The simplest whole number ratio of atoms in a compound is the empirical formula of a chemical compound in chemistry. Sulfur monoxide's empirical formula, SO, and disulfur dioxide's empirical formula, S2O2, are two straightforward examples of this idea.
The simplest whole number ratio of each type of atom in a compound is its empirical formula. It can be determined from data on the mass of each component in a compound or from the composition's proportion.
To learn more about chemical reaction visit:
brainly.com/question/14044066
#SPJ4