Answer:
6 socks
Step-by-step explanation:
What we must do is calculate the probability of this happening, that he takes out two black socks in the first two taken out.
There are 12 black socks and in total they are 24, therefore the probability of drawing 1 is:
12/24
and now the probability of getting another one is 11 (there is one less outside) and in total they are 23:
11/23
the final probability is the multiplication of these events:
(12/24) * (11/23)
P = 0.24
Now, to know how many you should get, we multiply the probability by the total number of socks, that is:
0.24 * 24 = 5.76
So you must take out at least 6 socks for the above to happen.
How many modes does the data set shown below contain?<br><br><br>
1, 3, 3, 4, 6, 6, 7, 7, 7, 10, 12
kipiarov [429]
Answer:
There are 3 modes
Step-by-step explanation:
There are two 3s, two 6s, and three 7s
The answer is x=4.5 and y=1 they are dilated by multiplying 3
Answer:
Yes, both np and n(1-p) are ≥ 10
Mean = 0.12 ; Standard deviation = 0.02004
Yes. There is a less than 5% chance of this happening by random variation. 0.034839
Step-by-step explanation:
Given that :
p = 12% = 0.12 ;
Sample size, n = 263
np = 263 * 0.12 = 31.56
n(1 - p) = 263(1 - 0.12) = 263 * 0.88 = 231.44
According to the central limit theorem, distribution of sample proportion approximately follow normal distribution with mean of p = 0.12 and standard deviation sqrt(p*(1 - p)/n) = sqrt (0.12 *0.88)/n = sqrt(0.0004015) = 0.02004
Z = (x - mean) / standard deviation
x = 22 / 263 = 0.08365
Z = (0.08365 - 0.12) / 0.02004
Z = −1.813872
Z = - 1.814
P(Z < −1.814) = 0.034839 (Z probability calculator)
Yes, it is unusual
0.034 < 0.05 (Hence, There is a less than 5% chance of this happening by random variation.