Answer: D
Explanation:
This is the answer because everyone knows he discovered gravity and he conducted scientific experiments to prove them which he also used math for
Hope this helps
In order to determine the increase in boiling point of a solvent due to the presence of a solute, we use the formula:
ΔT = Kb * m * i
Here, Kb is a property of the solvent, so remains constant regardless of the solute. Moreover, because the concentration m has been fixed, this will also not be considered. In order to determine which solute will have the greatest effect, we must check i, the van't Hoff factor.
Simply stated, i is the number of ions that a substance produces when dissolved. Therefore, the solute producing the most ions will be the one causing the greatest change in boiling point temperature.
Answer:

Explanation:
We are asked to find how many moles are in 4.8 × 10²³ fluorine atoms. We convert atoms to moles using Avogadro's Number or 6.022 × 10²³. This is the number of particles (atoms, molecules, formula units, etc.) in 1 mole of a substance. In this case, the particles are atoms of fluorine.
We will convert using dimensional analysis and set up a ratio using Avogadro's Number.

We are converting 4.8 × 10²³ fluorine atoms to moles, so we multiply the ratio by this number.

Flip the ratio so the units of atoms of fluorine cancel each other out.


Condense into 1 fraction.

Divide.

The original measurement of atoms has 2 significant figures, so our answer must have the same. For the number we found, that is the hundredths place. The 7 in the thousandths tells us to round the 9 in the hundredths place up to a 0. Then, we also have to round the 7 in the tenths place up to an 8.

4.8 × 10²³ fluorine atoms are equal to <u>0.80 moles of fluorine.</u>