Answer:
0.0611M of HNO3
Explanation:
<em>The concentration of the NaOH solution must be 0.1198M</em>
<em />
The reaction of NaOH with HNO3 is:
NaOH + HNO3 → NaNO3 + H2O
<em>1 mole of NaOH reacts per mole of HNO3.</em>
That means the moles of NaOH used in the titration are equal to moles of HNO3.
<em>Moles HNO3:</em>
12.75mL = 0.01275L * (0.1198mol / L) = 0.0015274 moles NaOH = Moles HNO3.
In 25.00mL = 0.025L -The volume of the aliquot-:
0.00153 moles HNO3 / 0.025L =
<h3> 0.0611M of HNO3</h3>
Answer:
Because it keeps track of all the elements
Answer: Butane will effuse more quickly because it has a smaller molar mass
Explanation:
Molar mass of C4H10 = 58.123 g/mole
Molar mass of I2 = 253.808 g/mole
Answer:
0.082g
Explanation:
The following data were obtained from the question:
Heat (Q) = 0.092J
Change in temperature (ΔT) = 0.267°C
Specific heat capacity (C) of water = 4.184J/g°C
Mass (M) =..?
Thus, the mass of present can be obtained as follow:
Q = MCΔT
0.092 = M x 4.184 x 0.267
Divide both side by 4.184 x 0.267
M = 0.092 / (4.184 x 0.267)
M = 0.082g
Therefore, mass of water was present is 0.082.
Answer:
• The actual number of moles of each element in the smallest unit of the compound. •In water (H 2 O), ammonia (NH 3), methane (CH 4), and ionic compounds, the empirical and molecular
Explanation: