The term “electric field” refers to the physical field that surrounds electrically charged particles and acts to either attract or repel all other charged particles in the field (also known as an E-field).
It can also refer to the physical field surrounding a system of charged particles. Electric fields are composed of electric charges and time-varying electric currents.
Both electric and magnetic fields are manifestations of the electromagnetic field, one of the four fundamental interactions (sometimes known as forces) of nature.
Electrical technology makes use of electric fields, which are significant in many branches of physics.
For instance, in atomic physics and chemistry, the electric field acts as an attractive force to hold atoms’ atomic nuclei and electrons together. It is also the force that causes atoms to chemically link together to form molecules.
To know more about electric field visit:
brainly.com/question/14811118
#SPJ4
Answer:
1020g
Explanation:
Volume of can=

Mass of can=80g=
1Kg=1000g
Density of lead=
By using 
We have to find the mass of lead which shot can it carry without sinking in water.
Before sinking the can and lead inside it they are floating in the water.
Buoyancy force =

Where
Density of water
Mass of can
Mass of lead
Volume of can
Substitute the values then we get




Hence, 1020 grams of lead shot can it carry without sinking water.
Answer:
The speed of the electron is 1.371 x 10⁶ m/s.
Explanation:
Given;
wavelength of the ultraviolet light beam, λ = 130 nm = 130 x 10⁻⁹ m
the work function of the molybdenum surface, W₀ = 4.2 eV = 6.728 x 10⁻¹⁹ J
The energy of the incident light is given by;
E = hf
where;
h is Planck's constant = 6.626 x 10⁻³⁴ J/s
f = c / λ

Photo electric effect equation is given by;
E = W₀ + K.E
Where;
K.E is the kinetic energy of the emitted electron
K.E = E - W₀
K.E = 15.291 x 10⁻¹⁹ J - 6.728 x 10⁻¹⁹ J
K.E = 8.563 x 10⁻¹⁹ J
Kinetic energy of the emitted electron is given by;
K.E = ¹/₂mv²
where;
m is mass of the electron = 9.11 x 10⁻³¹ kg
v is the speed of the electron

Therefore, the speed of the electron is 1.371 x 10⁶ m/s.