Your answer for this question is the third option.
When a person collides with an inflated air bag, the impact forces the molecules of gas in the bag closer together. The compression of the gas absorbs the energy of the impact.
Answer:
0.25 m.
Explanation:
We'll begin by calculating the spring constant of the spring.
From the diagram, we shall used any of the weight with the corresponding extention to determine the spring constant. This is illustrated below:
Force (F) = 0.1 N
Extention (e) = 0.125 m
Spring constant (K) =?
F = Ke
0.1 = K x 0.125
Divide both side by 0.125
K = 0.1/0.125
K = 0.8 N/m
Therefore, the force constant, K of spring is 0.8 N/m
Now, we can obtain the number in gap 1 in the diagram above as follow:
Force (F) = 0.2 N
Spring constant (K) = 0.8 N/m
Extention (e) =..?
F = Ke
0.2 = 0.8 x e
Divide both side by 0.8
e = 0.2/0.8
e = 0.25 m
Therefore, the number that will complete gap 1is 0.25 m.
I'm guessing that this is a problem to find the weight of a 90kg mass on a planet where the acceleration of gravity is 4 m/s^2. (Much less gravity than Earth, a little more than Mars.)
Just do the multiplication, and you get
360 Newtons.
Answer:
599 meters is the answer rounded to the nearest whole number and 599.489795918 meters is the complete answer
Explanation:
to find gravitational potential energy you multiply mass x acceleration due to gravity (always 9.8 on earth) x hight
since we know the gravitational potential energy and want to find out the hight, we take the gravitational potential energy (470,000) and divide it by the product of acceleration due to gravity x mass (9.8 x 80)
so how high the hiker climbed is equal to 470,000 divided by (9.8 x 80)
hight = 470,000 / (9.8 x 80)
hight = 470,000 / 784
hight = 599.489795918 meters
as for rounding, if the decimal is less than 5 you round "down" and keep the current whole number, if the decimal is 5 or greater you round "up" and add 1 to get your new number