Answer:
a) ![\lambda=0.935\ \textup{m}](https://tex.z-dn.net/?f=%5Clambda%3D0.935%5C%20%5Ctextup%7Bm%7D)
b) ![f=36.19\approx 36\ \textup{Hz}](https://tex.z-dn.net/?f=f%3D36.19%5Capprox%2036%5C%20%5Ctextup%7BHz%7D)
Explanation:
Given:
String vibrates transversely fourth dynamic, thus n = 4
mass of the string, m = 13.7 g = 13.7 × 10⁻¹³ kg
Tension in the string, T = 8.39 N
Length of the string, L = 1.87 m
a) we know
![L= n\frac{\lambda}{2}](https://tex.z-dn.net/?f=L%3D%20n%5Cfrac%7B%5Clambda%7D%7B2%7D)
where,
= wavelength
on substituting the values, we get
![1.87= 4\times \frac{\lambda}{2}](https://tex.z-dn.net/?f=1.87%3D%204%5Ctimes%20%5Cfrac%7B%5Clambda%7D%7B2%7D)
or
![\lambda=0.935\ \textup{m}](https://tex.z-dn.net/?f=%5Clambda%3D0.935%5C%20%5Ctextup%7Bm%7D)
b) Speed of the wave (v) in the string is given as:
![v =f\lambda](https://tex.z-dn.net/?f=v%20%3Df%5Clambda)
also,
![v=\sqrt\frac{T}{(\frac{m}{L})}](https://tex.z-dn.net/?f=v%3D%5Csqrt%5Cfrac%7BT%7D%7B%28%5Cfrac%7Bm%7D%7BL%7D%29%7D)
equating both the formula for 'v' we get,
![f\lambda=\sqrt\frac{T}{(\frac{m}{L})}](https://tex.z-dn.net/?f=f%5Clambda%3D%5Csqrt%5Cfrac%7BT%7D%7B%28%5Cfrac%7Bm%7D%7BL%7D%29%7D)
on substituting the values, we get
![f\times 0.935=\sqrt\frac{8.39}{(\frac{13.7\times 10^{3}}{1.87})}](https://tex.z-dn.net/?f=f%5Ctimes%200.935%3D%5Csqrt%5Cfrac%7B8.39%7D%7B%28%5Cfrac%7B13.7%5Ctimes%2010%5E%7B3%7D%7D%7B1.87%7D%29%7D)
or
![f=\frac{33.84}{0.935}](https://tex.z-dn.net/?f=f%3D%5Cfrac%7B33.84%7D%7B0.935%7D)
or
![f=36.19\approx 36\ \textup{Hz}](https://tex.z-dn.net/?f=f%3D36.19%5Capprox%2036%5C%20%5Ctextup%7BHz%7D)
Answer:
i think it's C thx correct me if wrong
1/2 x 240 x 64 = 120 X 64 = 7680 J
![\boxed{\sf C=\dfrac{Q}{V}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Csf%20C%3D%5Cdfrac%7BQ%7D%7BV%7D%7D)
But
![\boxed{\sf \Delta V_{R_2\to R_1}={\displaystyle{\int}^{R_1}_{R_2}}dV=-{\displaystyle{\int}^{R_1}_{R_2}}\dfrac{kQ}{r^2}dR}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Csf%20%5CDelta%20V_%7BR_2%5Cto%20R_1%7D%3D%7B%5Cdisplaystyle%7B%5Cint%7D%5E%7BR_1%7D_%7BR_2%7D%7DdV%3D-%7B%5Cdisplaystyle%7B%5Cint%7D%5E%7BR_1%7D_%7BR_2%7D%7D%5Cdfrac%7BkQ%7D%7Br%5E2%7DdR%7D)
- Hence higher the radius lower the voltage
- Lower the voltage higher the capacitance .
<h3>100cm diameter having aluminium sphere has a larger capacitance</h3>