1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ann [662]
3 years ago
11

Heated lithium atoms emit photons of light with an energy of 2.961 × 10−19 J. Calculate the frequency and wavelength of one of t

hese photons. What is the total energy in 1 mole of these photons? What is the color of the emitted light?
Physics
1 answer:
tatiyna3 years ago
6 0

Answer:

4.5 x 10¹⁴ Hz

666.7 nm

1.8 x 10⁵ J

The color of the emitted light is red

Explanation:

E = energy of photons of light = 2.961 x 10⁻¹⁹ J

f = frequency of the photon

Energy of photons is given as

E = h f

2.961 x 10⁻¹⁹ = (6.63 x 10⁻³⁴) f

f = 4.5 x 10¹⁴ Hz

c = speed of light = 3 x 10⁸ m/s

λ = wavelength of photon

Using the equation

c = f λ

3 x 10⁸ = (4.5 x 10¹⁴) λ

λ = 0.6667 x 10⁻⁶ m

λ = 666.7 x 10⁻⁹ m

λ = 666.7 nm

n = number of photons in 1 mole = 6.023 x 10²³

U = energy of 1 mole of photons

Energy of 1 mole of photons is given as

U = n E

U = (6.023 x 10²³) (2.961 x 10⁻¹⁹)

U = 1.8 x 10⁵ J

The color of the emitted light is red

You might be interested in
Astronaut X of mass 50kg floats next to Astronaut Y of mass 100kg while in space, as shown in the figure. The positive direction
jonny [76]

Answer:

C

Explanation:

The change in momentum of x has to be the opposite of the change in momentum of Y because the momentum is just transferred from one to another. But I'm still trying to figure it out how to calculate.

5 0
2 years ago
A uniform plank 8.00 m in length with mass 50.0 kg is supported at two points located 1.00 m and 5.00 m, respectively, from the
andreev551 [17]

To solve the problem it is necessary to use Newton's second law and statistical equilibrium equations.

According to Newton's second law we have to

F = mg

where,

m= mass

g = gravitational acceleration

For the balance to break, there must be a mass M located at the right end.

We will define the mass m as the mass of the body, located in an equidistant center of the corners equal to 4m.

In this way, applying the static equilibrium equations, we have to sum up torques at point B,

\sum \tau = 0

Regarding the forces we have,

3Mg-1mg=0

Re-arrange to find M,

M = \frac{m}{3}

M = \frac{50}{3}

M = 16.67Kg

Therefore the maximum additional mass you could place on the right hand end of the plank and have the plank still be at rest is 16.67Kg

8 0
3 years ago
A lad, waiting for his friend walks in the sidewalk, in front of her house, from the front door, first, he moves towards the Pos
Andreas93 [3]

His total displacement from his original position is -1 m

We know that total displacement of an object from a position x to a position x', d = final position - initial position.

d = x' - x

If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.

Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.

His final position, x" after moving back 6 m is gotten from

x" - x' = -6 m

x" = -6 + x'

x" = -6 + 5

x" = -1 m

Thus, his total displacement from his original position is

d = final position - initial position

d = x" - x

d = -1 m - 0 m

d = -1 m

So, his total displacement from his original position is -1 m

Learn more about displacement here:

brainly.com/question/17587058

3 0
2 years ago
When the rubber sheet is pulled down, the volume of the bell jar is ____________ and the pressure in the bell jar is ___________
Makovka662 [10]

Answer:

increases, decreases, respiration

8 0
2 years ago
What would changing the frequency of a wave do to the wave?
nata0808 [166]
The data convincingly show that wave frequency does not affect wave speed. An increase in wave frequency caused a decrease in wavelength while the wave speed remained constant. The last three trials involved the same procedure with a different rope tension.
3 0
2 years ago
Other questions:
  • You are lost at night in a large, open field. Your GPS tells you that you are 122.0 m from your truck, in a direction 58.0o east
    9·1 answer
  • A car accelerates from rest at -3.00m/s^2. What is the velocity at the end of 5.0s? What is the displacement after5.0s?
    9·1 answer
  • What type of surface is a poor reflector but a good absorber of radiation
    14·1 answer
  • Mars' atmosphere is mostly made of _____. A. helium B. nitrogen C. water vapor D. carbon dioxide
    11·1 answer
  • If izzy mass is 0.3kg he applide 657.9n force what will be the accelration​
    11·1 answer
  • Light incident on a Surface at an angle of 45° undergoes diffused reflection. At what angle will it reflect?
    10·2 answers
  • Alex, a rescue piot drops a survival kit while her plane is flying horizontally at an altitude of 1800.0 m with a forward veloci
    7·1 answer
  • What 2 things do you need to make sound? help ASAP
    13·1 answer
  • PLS ANSWER FAST WILL GIVE BRAINLY!!!
    8·1 answer
  • A sound wave traveling through dry air has a frequency of 16 Hz, a wavelength of 22 m, and a speed of 350 m/s. When the sound wa
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!