If it doesn't matter whether the points are integers or not you can just pick a number for either y or x and solve for the other variable. For example, if you pick 3 to be your x, plug it in and then solve for y. Start out with:

Plug in 3 for x:

. Then,

. Subtract 21 from both sides and then divide by -3 on both sides. You end up with y=-7 so one of your points is (3, -7)
Https://us-static.z-dn.net/files/d8d/e008ced388704d59896d3bf37158f465.jpeg
Answer:
y=-5/3x+20
Step-by-step explanation:
Let the equation of the required line be represented as ![\[y=mx+c\]](https://tex.z-dn.net/?f=%5C%5By%3Dmx%2Bc%5C%5D)
This line is perpendicular to the line ![\[y=\frac{3}{5}x+10\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B3%7D%7B5%7Dx%2B10%5C%5D)
![\[=>m*\frac{3}{5}=-1\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Em%2A%5Cfrac%7B3%7D%7B5%7D%3D-1%5C%5D)
![\[=>m=\frac{-5}{3}\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Em%3D%5Cfrac%7B-5%7D%7B3%7D%5C%5D)
So the equation of the required line becomes ![\[y=\frac{-5}{3}x+c\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B-5%7D%7B3%7Dx%2Bc%5C%5D)
This line passes through the point (15.-5)
![\[-5=\frac{-5}{3}*15+c\]](https://tex.z-dn.net/?f=%5C%5B-5%3D%5Cfrac%7B-5%7D%7B3%7D%2A15%2Bc%5C%5D)
![\[=>c=20\]](https://tex.z-dn.net/?f=%5C%5B%3D%3Ec%3D20%5C%5D)
So the equation of the required line is ![\[y=\frac{-5}{3}x+20\]](https://tex.z-dn.net/?f=%5C%5By%3D%5Cfrac%7B-5%7D%7B3%7Dx%2B20%5C%5D)
Among the given options, option 4 is the correct one.
Answer:
No.
Step-by-step explanation:
Well at first glance it might seem so but there are two points particularly that can tell you that these points cannot be within a function.
The points (3,2) and (3,-2) will yield an undefined slope (a straight vertical line). There is no possibility that the other points can be in this line (as their y - values are different) and there is no possibilty that this is a function at all according to the vertical line test (the test is that if you draw a vertical line that there shouldn't be more than one point on it).