<h2>Answer:</h2><h3>W = 5</h3><h3>Step-by-step explanation:</h3><h3>Simplify the brackets. </h3><h3>-2x^2 + wx - 4 - x^2 - 5x - 6 = -3x^2 - 10</h3><h3>Then simplify (-2x^2 + wx - 4 - x^2 - 5x - 6) to </h3><h3>( -3x^2 + wx - 10 - 5x)</h3><h3>This will give you 3x^2 + wx - 10 - 5x = -3x^2 - 10. </h3><h3>Now you need to cancel out -3x^2 on both sides. </h3><h3>wx - 10 - 5x = -10</h3><h3>Then cancel out -10 from both sides. </h3><h3>wx - 5x = 0</h3><h3>Now factor out the common term. (x) </h3><h3>w - 5 = 0.</h3><h3>giving you the answer w = 5. </h3><h3 /><h3 /><h3>welcome. *yeets*</h3>
Answer:
1. 19(25x2)
Step-by-step explanation:
19 x 25 = 475
475 x 2 = 950
Answer:
59
Step-by-step explanation:
1. -35
2. +9
3. -23
4. +3
5. +5
6. -7
7. +125
8. -18
Add them all up in a calculator and you get 59
Answer:
y = 2 - 
Step-by-step explanation:
results in a parabola (U-shape). Adding a negative in front of it flips the parabola to look like an upside-down U.
The 2 makes it shift up two decimal spots to (0,2).
Given:
The expression: (1 + x)^n
The Binomial Theorem is used to predict the products of a binomial raised to a certain power, n, without multiplying the terms one by one.
The following formula is used:
(a + b)^n = nCk * a^(n-k) * b^k
we have (1 +x)^n,
where a = 1
b = x
let n = 4
First term, k = 1
4C1 = 4
first term: 4*(1^(4-1))*x^1
Therefore, the first term is 4x. Do the same for the next three terms.
2nd term: k =2
3rd term: k = 3
4th term: k = 4
<span />