Answer:
A. The slope of Function A is greater than the slope of Function B.
Step-by-step explanation:
The slope of a function can be defined as rise/run. In Function A, the rise/run is 4. The slope in Function B is much easier to see: it is 2. Because 4 is greater than 2, Function A has a greater slope than Function B.
Answer:

Step-by-step explanation:
By definition, we can write ln instead of log. WHEN??
Whenever the base of the logarithm is the number "e".
Hence, when we have:

We can write it in shortcut as:

Hence, ln x can also be written as 
Fourth answer choice is right.
To do this, simply add the 2 functions-as it says:
(2x+1) + (-3x+4)
2x+1-3x-4
-x-3
Your answer is -x-3
8x²+3y²=24
8x²+3y²-24=0
Let x be 1 ,
Therefore
8+3y²-24=0
3y²-16=0
3y²=16
y²=16/3
y=4/1.7
y=40/17
<em><u>Take</u></em><em><u> </u></em><em><u>different</u></em><em><u> </u></em><em><u>values</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>&</u></em><em><u>y</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>plot</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>graph</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em>
Answer: 376 cm^2
Step-by-step explanation:
First you would double all the dimensions:
l = 5 cm x 2 = 10 cm
w = 4 cm x 2 = 8 cm
h = 3 cm x 2 = 6 cm
The formula for finding the surface area of a rectangular prism is A=2(wl+hl+hw)
Substitute the values:
A=2(8*10+6*10+6*8)
Solve using PEMDAS:
A=2(80+60+48)
A=2(188)
A=376
Surface area is always in units^2:
376 cm^2