Answer:
The car's displacement during this time is 25.65 meters.
Explanation:
Given that,
Final velocity of the car, v = 4.5 m/s
Deceleration of the car, 
Let u is the initial speed of the car. It is given by :



u = 12.6 m/s
Let d is the car's displacement during this time. It can be calculated using second equation of motion as :


d = 25.65 meters
So, the car's displacement during this time is 25.65 meters. Hence, this is the required solution.
Answer:

Explanation:
Kinetic energy is energy due to motion. The formula is half the product of mass and velocity squared.

The mass of the roller coaster car is 2000 kilograms and the car is moving 10 meters per second.
Substitute these values into the formula.

Solve the exponent.
- (10 m/s)²= 10 m/s * 10 m/s= 100 m²/s²

Multiply the first two numbers together.

Multiply again.

- 1 kilogram square meter per square second is equal to 1 Joule.
- Our answer of 100,000 kg*m²/s² is equal to 100,000 Joules.

The roller coaster car has <u>100,000 Joules</u> of kinetic energy.
C. Convection is the transfer of energy by the motion of a fluid. Fluids are by definition substances in which particles are able to flow. Hence the answer is c
According to Boyle’s law, For a fixed amount of an ideal gas kept at a fixed temperature, P (pressure) and V (volume) are inversely proportional.
Therefore,

Given
,
and
.
Thus,
