Assuming it is on a horizontal surface:
friction = μR
R = 20g (g is gravity 9.81)
so Friction = 0.085 x 20g
Work done is force x distance
so Work done = 0.085 x 20g x 28
= 466.956 J
Answer:
Stress = F / A force per unit area
A = 3.00 cm^2 = 3 E-4 m^2
F = 2.4E8 N/m^2 * 3E-4 m^2 = 7.2E4 N max force applied
F/3 = 2.4E4 N if force not to exceed limit (= f)
f = M a
a = 2.4 E4 N / 1.2 E3 kg = 20 m / s^2 about 2 g
Answer:
Final velocity v=19.83 m/sec
Explanation:
We have given initial velocity u =5.13 m/sexc
Acceleration of automobile 
Time t =4.9 sec
We have to find the final velocity v
According to first law of motion v = u+at ,here v is the final velocity , a is acceleration and t is time
So 
So the final velocity is 19.83 m/sec
The displacement of the train after 2.23 seconds is 25.4 m.
<h3>
Resultant velocity of the train</h3>
The resultant velocity of the train is calculated as follows;
R² = vi² + vf² - 2vivf cos(θ)
where;
- θ is the angle between the velocity = (90 - 51) + 37 = 76⁰
R² = 8.81² + 9.66² - 2(8.81 x 9.66) cos(76)
R² = 129.75
R = √129.75
R = 11.39 m/s
<h3>Displacement of the train</h3>
Δx = vt
Δx = 11.39 m/s x 2.23 s
Δx = 25.4 m
Thus, the displacement of the train after 2.23 seconds is 25.4 m.
Learn more about displacement here: brainly.com/question/2109763
#SPJ1
Answer:
When two waves meet in such a way that their crests line up together, then it's called constructive interference. The resulting wave has a higher amplitude. In destructive interference, the crest of one wave meets the trough of another, and the result is a lower total amplitude.