1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ser-zykov [4K]
3 years ago
10

What happens to the speed of water waves as it enters a shallow medium .

Physics
1 answer:
Lisa [10]3 years ago
3 0
Waves were pulling up somewhere and infinitum
You might be interested in
A woman can row a boat at 5.60 km/h in still water. (a) If she is crossing a river where the current is 2.80 km/h, in what direc
katrin2010 [14]

Answer:

a) θ=210°, b) t=1.155hr, c) t=1.333hr, d) t=1.333hr, e) θ=180° (straight across), f) t=1hr.

Explanation:

So, the very first thing we nee to do when solving this problem is draw a diagram that represents it. In the attached picture I show a diagram for each part of this problem.

part a)

So, for her to move in a direction directly opposite her starting point, the x-component of her velocity must be de same as the velocity of the river in the opposite direction. We can use this fact to find the angle we need. If we analize the triangle I drew in the diagram, we can ses that:

cos \theta = \frac {V_{river}}{V_{boat}}

When solving for theta, we get that:

\theta =cos^{-1} ( \frac {V_{river}}{V_{boat}})

so now we can substitute the corresponding values:

\theta =cos^{-1} ( \frac {2.80km/hr}{5.60km/hr}})

Which yields:

\theta = 60^{o}

but we are measuring the angle relative to the line perpendicular to the river, positive if down the river. So we need to subtract the angle from 270° so we get:

θ=270°-60°=210°

part b)

for part b, we need to find what the y-component for the velocity of the boat is for an angle of 210° as shown in the problem, so we get that:

V_{y}=5.60km/hr*cos(210^{o})

V_{y}=-4.85km/hr

The woman will head in a negative 5.60km distance from one side to the other, so we get that the time it takes her to go to the other side of the river is:

t=\frac{y}{V_{y}}

t=\frac{5.60km}{4.85km/hr}=1.155hr

part c)

In order to find the time it takes her to travel 2.80km down and up the river, we need to find the velocities she will have in both directions. First, down stream:

V_{ds}=V_{river}+V{boat}

V_{ds}=2.80km/hr+5.60km/hr=8.40km/hr

and now up stream:

V_{us}=V_{boat}-V{river}

V_{us}=5.60km/hr-2.80km/hr=2.80km/hr

Once we got these two velocities we will now need to find the time to take each trip:

time down stream:

t_{ds}=\frac{x}{v_{ds}}

t_{ds}=\frac{2.80km}{8.40km/hr}=0.333hr

and the time up stream:

t_{us}=\frac{x}{v_{us}}

t_{us}=\frac{2.80km}{2,80km/hr}=1hr

so the total time will be:

t_{ds}+t_{us}=0.333hr+1hr=1.333hr

d) the time it takes the boat to go upstream and then downstream for the same distance is the same as the time we got on part c, since both times will be the same but they will come in different order, but their sum will be just the same:

t=1.333hr

e) For her to cross the river faster, she must row in a 180° direction (this is in a direction straight accross the river) that way she will use all her velocity to move across the river. (Even though she will move a certain distance horizontally and will not reach a point opposite to the starting point.)

f) In order to find the time it takes her to get to the other side, we need to divide the distance into the velocity of the boat.

t=\frac{d}{v_{boat}}

t=\frac{5.60km}{5.60km/hr}

so

t= 1hr

4 0
4 years ago
Read 2 more answers
What is created by the flow of electric current?
grin007 [14]
C.) a magnetic field is the correct answer…
7 0
3 years ago
Read 2 more answers
A ray of light traveling through air strikes a piece of diamond at an angle of incidence equal to 56 degrees. Calculate the angu
Montano1993 [528]

Answer:

The angle of separation is  \Delta \theta =  0.93 ^o

Explanation:

From the question we are told that

    The angle of incidence is  \theta  _ i  = 56^o

     The refractive index of violet light  in diamond  is  n_v = 2.46

       The refractive index of red light in diamond is n_r = 2.41

      The wavelength of violet light is  \lambda _v = 400nm = 400*10^{-9}m

         The wavelength of red  light is  \lambda _r = 700nm = 700*10^{-9}m

Snell's  Law can be represented mathematically as

         \frac{sin \theta_i}{sin \theta_r} = n

Where \theta_r is the angle of refraction

=>       sin \theta_r  =   \frac{sin \theta_i}{n}

Now considering violet light

               sin \theta_r__{v}}  =   \frac{sin \theta_i}{n_v}

substituting values

                sin \theta_r__{v}}  =   \frac{sin (56)}{2.46}

                 sin \theta_r__{v}}  =  0.337

                 \theta_r__{v}}  =  sin ^{-1} (0.337)

                 \theta_r__{v}}  =  19.69^o

Now considering red light

               sin \theta_r__{R}}  =   \frac{sin \theta_i}{n_r}

substituting values

                sin \theta_r__{R}}  =   \frac{sin (56)}{2.41}

                 sin \theta_r__{R}}  =  0.344

                 \theta_r__{R}}  =  sin ^{-1} (0.344)

                 \theta_r__{R}}  = 20.12^o

The angle of separation between the red light and the violet light is mathematically evaluated as

                  \Delta \theta = \theta_r__{R}} -  \theta_r__{V}}

substituting values

                  \Delta \theta =20.12 - 19.69

                  \Delta \theta =  0.93 ^o

6 0
4 years ago
After a long day you go home in your friend's really fancy sports car which has a sun-roof on the top and a spoiler (a little wi
mixas84 [53]

Answer:

B: air pressure inside the car drops suddenly

Explanation:

Air in the car drops suddenly because the roof region has lowered pressure than the atmospheric pressure usually varying with the speed of the car

7 0
3 years ago
A merry-go-round of radius R, shown in the figure, is rotating at constant angular speed. The friction in its bearings is so sma
mel-nik [20]

The angular speed of the merry-go-round reduced more as the sandbag is

placed further from the axis than increasing the mass of the sandbag.

The rank from largest to smallest angular speed is presented as follows;

[m = 10 kg, r = 0.25·R]

              {} ⇩

[m = 20 kg, r = 0.25·R]

              {} ⇩

[m = 10 kg, r = 0.5·R]

              {} ⇩

[m = 10 kg, r = 0.5·R] = [m = 40 kg, r = 0.25·R]

              {} ⇩

[m = 10 kg, r = 1.0·R]

Reasons:

The given combination in the question as obtained from a similar question online are;

<em>1: m = 20 kg, r = 0.25·R</em>

<em>2: m = 10 kg, r = 1.0·R</em>

<em>3: m = 10 kg, r = 0.25·R</em>

<em>4: m = 15 kg, r = 0.75·R</em>

<em>5: m = 10 kg, r = 0.5·R</em>

<em>6: m = 40 kg, r = 0.25·R</em>

According to the principle of conservation of angular momentum, we have;

I_i \cdot \omega _i = I_f \cdot \omega _f

The moment of inertia of the merry-go-round, I_m = 0.5·M·R²

Moment of inertia of the sandbag = m·r²

Therefore;

0.5·M·R²·\omega _i = (0.5·M·R² + m·r²)·\omega _f

Given that 0.5·M·R²·\omega _i is constant, as the value of  m·r² increases, the value of \omega _f decreases.

The values of m·r² for each combination are;

Combination 1: m = 20 kg, r = 0.25·R; m·r² = 1.25·R²

Combination 2: m = 10 kg, r = 1.0·R; m·r² = 10·R²

Combination 3: m = 10 kg, r = 0.25·R; m·r² = 0.625·R²

Combination 4: m = 15 kg, r = 0.75·R; m·r² = 8.4375·R²

Combination 5: m = 10 kg, r = 0.5·R; m·r² = 2.5·R²

Combination 6: m = 40 kg, r = 0.25·R; m·r² = 2.5·R²

Therefore, the rank from largest to smallest angular speed is as follows;

Combination 3 > Combination 1 > Combination 5 = Combination 6 >

Combination 2

Which gives;

[<u>m = 10 kg, r = 0.25·R</u>] > [<u>m = 20 kg, r = 0.25·R</u>] > [<u>m = 10 kg, r = 0.5·R</u>] > [<u>m = </u>

<u>10 kg, r = 0.5·R</u>] = [<u>m = 40 kg, r = 0.25·R</u>] > [<u>m = 10 kg, r = 1.0·R</u>].

Learn more here:

brainly.com/question/15188750

6 0
2 years ago
Other questions:
  • What force is necessary to accelerate a 70-kg object at a rate of 4.2 m/s2 ? Show your wo k below?
    6·1 answer
  • When the palmaris longus muscle in the forearm is flexed, the wrist moves back and forth. If the muscle generates a force of 43.
    14·1 answer
  • 2 characteristics of constant speed
    5·1 answer
  • A cruise ship is having troubles with buoyancy. What is a reasonable solution? A. Increase the weight of the ship above water B.
    15·2 answers
  • IN a physics lab, a student discovers that the magnitude of the magnetic field at a certain distance from a long wire is 4.0μT.
    10·1 answer
  • A polar molecule is one that exists only at low temperatures. true or false
    7·1 answer
  • What distinguishes a nebula and a star?
    14·1 answer
  • A ladder is leaning against a vertical wall, and both ends of the ladder are at the point of slipping. The coefficient of fricti
    10·1 answer
  • The velocity of the wind relative to the water is crucial to sailboats. Suppose a sailboat is in an ocean current that has a vel
    14·1 answer
  • Help me with this please​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!