Answer:
v=1.295
Explanation:
What we are given:
a=5÷(3s^(1/3)+s^(5/2)) m/s^2
Start by using equation a ds = v dv
This problem requires a numeric method of solving. Therefore, you can integrate v ds normally, but you must use a different method for a ds The problem should look like this:

<em>a=2</em>
<em>b=1</em>
<em>x=5÷(3s^(1/3)+s^(5/2)) </em><em>m/s^2</em>
<em>dx=dv</em>
Integrate the left side the standard method.

<em>a=v</em>
<em>b=0</em>
<em>dx=dv</em>
<em>Integrating</em>
=v^2/2
Use Simpson's rule for the right site.

<em>a=b</em>
<em>b=a</em>
<em>x=f(x)</em>
f(x)=b-a/6*(f(a)+4f(a+b/2)+f(b)
If properly applied. you should now have the following equation:
v^2/2=5[(1/6*(0.25+4(0.162)+(0.106)]
=0.8376
Solve for v.
v=1.295
Answer:
No its not possible in that yes heat flow is due to temperature different but with time equilibrium in temperature is reached hence there is no temperature difference at both ends at this time
Sublimation-is the transitional phase of solid to gas skipping the liquid phase entirely
Well, it's actually optical "density", but I understand
what you're getting at.
That phenomenon is called "refraction".
It happens with any wave motion. It's very prominent in the
progress of seismic waves, radio waves, sound waves etc.