Answer:
16, 8, 23
Step-by-step explanation:
2x+x+x+15=47
4x+15=47
4x=32
x=8
2x=16
x+15=23
Assuming that the cost per minute is the same for both months and the plan fee is the same, you can use y=mx+b for this
y is the cost of the phone plan, x is the cost per minute and b is the start cost.
so 19.41=25x+b for the first month
and 45.65=380x+b for the second month
solve both for b you get:
19.41-25x=b and 45.65-380x=b. from this we get
19.41-25x=45.65-380x
solve for x
328x=26.24 and x=0.08
this means the cost per minute is 0.08c/min (answer A)
rewrite the equation to calculate b, and where this time, the x is the number of minutes talked.
y=0.08x+b and plug in one of the two months
45.65=0.08 * 380 + b
Solve for b and b is 15.25
so the final equation is
y=0.08x+15.25 (answer B)
Answer:
x = 29
Step-by-step explanation:
All triangle angles add up to 180 so:
x + 17 + 2x + 5 + 3x - 16 = 180
6x + 6 = 180
6x = 180 - 6
6x = 174
x = 29
Answer:
Step-by-step explanation:
hey i got the answer straight from my teach but ony a and c if you have the answer to b let me know : ( A) To determine the mean absolute deviation, first calculate the mean. Find the sum of the values: 8 plus 6 plus 9 plus 6 plus 14 plus 9 plus 5 plus 7 equals 64. Then divide the sum by the number of values: 64 divided by 8 equals 8. The mean is 8.
Next, find the distance of each value from the mean :
|8-8|=0 |6-8|=2 |9-8|=1 |6-8|=2 |14-8|=6 |9-8|=1 |5-8|=3 |7-8|=1
0 plus 2 plus 1 plus 2 plus 6 plus 1 plus 3 plus 1 equals 16. Then divide the sum of absolute deviations by the number of data values: 16 divided by 8 equals 2. The MAD of the data is 2.
C. Since the MAD for the vegetable plant data is so much higher than the MAD for the flower data, this indicates that the heights of the vegetable plants vary more than the heights of the flowers ALSO do you go to k12
Since she has painted 60% of her bedroom so far, 40% must remain. In order to know how many square feet that is, we take the total amount of square feet she needs to paint and multiply it by 0.4
45*0.4 = 18 square feet