Answer:
r = 3.61x
M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.![[S2O2^{-8} ]^{x} x [I^{-} ]^{y}](https://tex.z-dn.net/?f=%5BS2O2%5E%7B-8%7D%20%5D%5E%7Bx%7D%20x%20%5BI%5E%7B-%7D%20%5D%5E%7By%7D)
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :



x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:




y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :


k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r = 
r = 3.61x
M/s
Answer:
5. Please Kemi, be careful not to place your feet on the lava flowing down from the mountain.
6. A Ore canbe defined as a natural solid material gotten from the earth, which a metal or valuable mineral can be extracted from.
7. Diamond.
8. Fracture
9. Molten Magma
10. Natural
11. In-organic
12. Solid
13. Crystal structures
14. Definite Chemical Composition
15. Metallic
16. Non-Metallic
17. Energy Minerals
Explanation:
Answer:
strong enough to hold molecules relatively close together but not strong enough to keep molecules from moving past each other.
Explanation:
In liquids, the attractive intermolecular forces are <u>strong enough to hold molecules relatively close together but not strong enough to keep molecules from moving past each other</u>.
Intermolecular forces are the forces of repulsion or attraction.
Intermolecular forces lie between atoms, molecules, or ions. Intramolecular forces are strong in comparison to these forces.
<u />
The answer is Ra
Atomic number for Be is 4
Atomic number for Mg 12
Atomic number for Ra 88
Atomic number for Ba 56
Answer:
D
Explanation:
ive watched this on a national geo show. But remind me again what is 1 Au and 3DO AU i forgot...