Explanation:
The given balanced reaction is as follows.

It is given that mass of ammonium nitrate is 86.0 kg.
As 1 kg = 1000 g. So, 86.0 kg = 86000 g.
Hence, moles of
present will be as follows.
Moles of
= 
= 
= 1074.42 mol
Therefore, moles of
,
and
produced by 1074.42 mole of
will be as follows.
Moles of
= 
= 537.21 mol
Moles of
= 
= 1074.42 mol
Moles of
= 
= 2148.84 mol
Therefore, total number of moles will be as follows.
537.21 mol + 1074.42 mol + 2148.84 mol
= 3760.47 mol
According to ideal gas equation, PV = nRT. Hence, calculate the volume as follows.
PV = nRT
1 atm \times V = 3760.47 mol \times 0.0821 L atm/mol K \times 580 K[/tex] (as
= 307 + 273 = 580 K)
V = 179066.06 L
Thus, we can conclude that total volume of the gas is 179066.06 L.
Statement 2 is correct.
solids moving into solution is a physical change as the core structure of the molecules remain the same. evaporation of water and crystallization of salt are both physical changes as well.
The water does not change it's H2O chemical makeup because salt was dissolved into it.
Answer:
Ununoctium
Explanation:
It's at the very end of the periodic table
Explanation:
21 % of oxygen is present in air .
hope it is helpful to you
Answer:
See explanation.
Explanation:
Hello!
In this case, we consider the questions:
a. Ideal gas at:
i. 273.15 K and 22.414 L.
ii. 500 K and 100 cm³.
b. Van der Waals gas at:
i. 273.15 K and 22.414 L.
ii. 500 K and 100 cm³.
Thus, we define the ideal gas equation and the van der Waals one as shown below:

Whereas b and a for hydrogen sulfide are 0.0434 L/mol and 4.484 L²*atm / mol² respectively, therefore, we proceed as follows:
a.
i. 273.15 K and 22.414 L.

ii. 500 K and 100 cm³ (0.1 L).

b.
i. 273.15 K and 22.414 L: in this case, v = 22.414 L / 1.00 mol = 22.414 L/mol

ii. 500 K and 100 cm³: in this case, v = 0.1 L / 1.00 mol = 0.100 L/mol

Whereas we can see a significant difference when the gas is at 500 K and occupy a volume of 0.100 L.
Best regards!