Answer:
The pressure, when the volume is reduced to 7.88L, is 846 torr (option A)
Explanation:
Step 1: Data given
The temperature of a gas = 25.0°C
AT 25 °C the gas occupies a volume of 10.0L and a pressure of 667 torr.
The volume reduces to 7.88 L but the temperature stays constant.
Step 2: Boyle's law
(P1*V1)/T1 = (P2*V2)/T2
⇒ Since the temperature stays constant, we can simplify to:
P1*V1 = P2*V2
⇒ with P1 = the initial pressure 667 torr
⇒ with V1 = the initial volume = 10.0 L
⇒ with P2 = the final pressure = TO BE DETERMINED
⇒ with V2 = the final volume = 7.88L
P2 = (P1*V1)/V2
P2 = (667*10.0)/7.88
P2 = 846 torr
The pressure, when the volume is reduced to 7.88L, is 846 torr (option A)
For all three questions, we will use the fact that
- molarity = (moles of solute)/(liters of solution)
1) For 175 mL of solution at 0.203 M, this means that:
- 0.203 = (moles of solute)/0.175
- moles of solute = 0.035523 mol
Considering the hydrochloric acid solution, if we have 0.035523 mol, then:
- 6.00 = 0.035523/(liters of solution)
- liters of solution = 0.035523/6.00 = 0.0059205 = <u>5.92 mL (to 3 sf)</u>
<u />
2) If there is 20.3 mL = 0.0203 L, then:
- 8.20 = (moles of solute)/0.0203
- moles of solute = 0.16646 mol
This means that the molarity of the diluted solution is:
- 0.16646/(0.200) = <u>0.832 M (to 3 sf)</u>
<u />
3) If we need 1.50 L of 0.700 M solution, then:
- 0.700 = (moles of solute)/1.50
- moles of solute = 1.05 mol
Considering the 9.36 M acid solution, from which we need 1.05 mol of perchloric acid from,
- 9.36 = 1.05/(liters of solution)
- liters of solution = 1.05/9.36, which is 0.11217948717949 L, or <u>112 mL (to 3 sf)</u>
Explanation:
As per Brønsted-Lowry concept of acids and bases, chemical species which donate proton are called Brønsted-Lowry acids.
The chemical species which accept proton are called Brønsted-Lowry base.
(a) 
is Bronsted lowry acid and
is its conjugate base.
is Bronsted lowry base and
is its conjugate acid.
(b)

is Bronsted lowry base and HCN is its conjugate acid.
is Bronsted lowry acid and
is its conjugate base.
(c)

is Bronsted lowry acid and
is its conjugate base.
Cl^- is Bronsted lowry base and HCl is its conjugate acid.
(d)

is Bronsted lowry acid and
is its conjugate base.
OH^- is Bronsted lowry base and
is its conjugate acid.
(e)

is Bronsted lowry base and OH- is its conjugate acid.
is Bronsted lowry acid and OH- is its conjugate base.
I don't think so. "It's not a matter of pigment discrimination: Red and yellow bell peppers are essentially just green peppers that have been allowed to ripen"